ﻻ يوجد ملخص باللغة العربية
We propose a unified description of two important phenomena: color confinement in large-$N$ gauge theory, and Bose-Einstein condensation (BEC). We focus on the confinement/deconfinement transition characterized by the increase of the entropy from $N^0$ to $N^2$, which persists in the weak coupling region. Indistinguishability associated with the symmetry group -- SU($N$) or O($N$) in gauge theory, and S$_N$ permutations in the system of identical bosons -- is crucial for the formation of the condensed (confined) phase. We relate standard criteria, based on off-diagonal long range order (ODLRO) for BEC and the Polyakov loop for gauge theory. The constant offset of the distribution of the phases of the Polyakov loop corresponds to ODLRO, and gives the order parameter for the partially-(de)confined phase at finite coupling. We demonstrate this explicitly for several quantum mechanical systems (i.e., theories at small or zero spatial volume) at weak coupling, and argue that this mechanism extends to large volume and/or strong coupling. This viewpoint may have implications for confinement at finite $N$, and for quantum gravity via gauge/gravity duality.
We relate quark confinement, as measured by the Polyakov-loop order parameter, to color confinement, as described by the Kugo-Ojima/Gribov-Zwanziger scenario. We identify a simple criterion for quark confinement based on the IR behaviour of ghost and
It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topologi
The hidden local symmetry is a successful model to describe the properties of the vector mesons in QCD. We point out that if we identify this hidden gauge theory as the magnetic picture of QCD, a linearized version of the model simultaneously describ
Some aspects are discussed of the mechanism of color confinement in QCD by condensation of magnetic monopoles in the vacuum.
In this paper we study the corrections emergent from a Hov{r}ava-Lifshitz extension of the complex scalar sector to the Bose-Einstein condensation and to the thermodynamics parameters. We initially discussed some features of the model to only then co