ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Bounds on Nonlinear Partial Differential Equations in Model Certification, Validation, and Experimental Design

59   0   0.0 ( 0 )
 نشر من قبل Michael McKerns
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف M. McKerns




اسأل ChatGPT حول البحث

We demonstrate that the recently developed Optimal Uncertainty Quantification (OUQ) theory, combined with recent software enabling fast global solutions of constrained non-convex optimization problems, provides a methodology for rigorous model certification, validation, and optimal design under uncertainty. In particular, we show the utility of the OUQ approach to understanding the behavior of a system that is governed by a partial differential equation -- Burgers equation. We solve the problem of predicting shock location when we only know bounds on viscosity and on the initial conditions. Through this example, we demonstrate the potential to apply OUQ to complex physical systems, such as systems governed by coupled partial differential equations. We compare our results to those obtained using a standard Monte Carlo approach, and show that OUQ provides more accurate bounds at a lower computational cost. We discuss briefly about how to extend this approach to more complex systems, and how to integrate our approach into a more ambitious program of optimal experimental design.



قيم البحث

اقرأ أيضاً

The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential perspective, most notably the absence of explicit conditioning formula. This paper extends earlier work on linear PDEs to a general class of initial value problems specified by nonlinear PDEs, motivated by problems for which evaluations of the right-hand-side, initial conditions, or boundary conditions of the PDE have a high computational cost. The proposed method can be viewed as exact Bayesian inference under an approximate likelihood, which is based on discretisation of the nonlinear differential operator. Proof-of-concept experimental results demonstrate that meaningful probabilistic uncertainty quantification for the unknown solution of the PDE can be performed, while controlling the number of times the right-hand-side, initial and boundary conditions are evaluated. A suitable prior model for the solution of the PDE is identified using novel theoretical analysis of the sample path properties of Mat{e}rn processes, which may be of independent interest.
In recent years, sparse spectral methods for solving partial differential equations have been derived using hierarchies of classical orthogonal polynomials on intervals, disks, disk-slices and triangles. In this work we extend the methodology to a hi erarchy of non-classical multivariate orthogonal polynomials on spherical caps. The entries of discretisations of partial differential operators can be effectively computed using formulae in terms of (non-classical) univariate orthogonal polynomials. We demonstrate the results on partial differential equations involving the spherical Laplacian and biharmonic operators, showing spectral convergence.
In this paper, we propose third-order semi-discretized schemes in space based on the tempered weighted and shifted Grunwald difference (tempered-WSGD) operators for the tempered fractional diffusion equation. We also show stability and convergence an alysis for the fully discrete scheme based a Crank--Nicolson scheme in time. A third-order scheme for the tempered Black--Scholes equation is also proposed and tested numerically. Some numerical experiments are carried out to confirm accuracy and effectiveness of these proposed methods.
We develop in this work a numerical method for stochastic differential equations (SDEs) with weak second order accuracy based on Gaussian mixture. Unlike the conventional higher order schemes for SDEs based on It^o-Taylor expansion and iterated It^o integrals, the proposed scheme approximates the probability measure $mu(X^{n+1}|X^n=x_n)$ by a mixture of Gaussians. The solution at next time step $X^{n+1}$ is then drawn from the Gaussian mixture with complexity linear in the dimension $d$. This provides a new general strategy to construct efficient high weak order numerical schemes for SDEs.
We consider best approximation problems in a nonlinear subset $mathcal{M}$ of a Banach space of functions $(mathcal{V},|bullet|)$. The norm is assumed to be a generalization of the $L^2$-norm for which only a weighted Monte Carlo estimate $|bullet|_n $ can be computed. The objective is to obtain an approximation $vinmathcal{M}$ of an unknown function $u in mathcal{V}$ by minimizing the empirical norm $|u-v|_n$. We consider this problem for general nonlinear subsets and establish error bounds for the empirical best approximation error. Our results are based on a restricted isometry property (RIP) which holds in probability and is independent of the nonlinear least squares setting. Several model classes are examined where analytical statements can be made about the RIP and the results are compared to existing sample complexity bounds from the literature. We find that for well-studied model classes our general bound is weaker but exhibits many of the same properties as these specialized bounds. Notably, we demonstrate the advantage of an optimal sampling density (as known for linear spaces) for sets of functions with sparse representations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا