ترغب بنشر مسار تعليمي؟ اضغط هنا

A weak topological insulator state in quasi-one-dimensional superconductor TaSe$_3$

430   0   0.0 ( 0 )
 نشر من قبل Yeong Kwan Kim
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A well-established way to find novel Majorana particles in a solid-state system is to have superconductivity arising from the topological electronic structure. To this end, the heterostructure systems that consist of normal superconductor and topological material have been actively explored in the past decade. However, a search for the single material system that simultaneously exhibits intrinsic superconductivity and topological phase has been largely limited, although such a system is far more favorable especially for the quantum device applications. Here, we report the electronic structure study of a quasi-one-dimensional (q1D) superconductor TaSe$_3$. Our results of angle-resolved photoemission spectroscopy (ARPES) and first-principles calculation clearly show that TaSe$_3$ is a topological superconductor. The characteristic bulk inversion gap, in-gap state and its shape of non-Dirac dispersion concurrently point to the topologically nontrivial nature of this material. The further investigations of the Z$_2$ indices and the topologically distinctive surface band crossings disclose that it belongs to the weak topological insulator (WTI) class. Hereby, TaSe$_3$ becomes the first verified example of an intrinsic 1D topological superconductor. It hopefully provides a promising platform for future applications utilizing Majorana bound states localized at the end of 1D intrinsic topological superconductors.



قيم البحث

اقرأ أيضاً

146 - Xiaofeng Xu , W. H. Jiao , N. Zhou 2015
We report on the quasi-linear in field intrachain magnetoresistance in the normal state of a quasi-one-dimensional superconductor Ta$_4$Pd$_3$Te$_{16}$ ($T_c$$sim$4.6 K). Both the longitudinal and transverse in-chain magnetoresistance shows a power-l aw dependence, $Delta rho$$propto$B$^alpha$, with the exponent $alpha$ close to 1 over a wide temperature and field range. The magnetoresistance shows no sign of saturation up to 50 tesla studied. The linear magnetoresistance observed in Ta$_4$Pd$_3$Te$_{16}$ is found to be overall inconsistent with the interpretations based on the Dirac fermions in the quantum limit, charge conductivity fluctuations as well as quantum electron-electron interference. Moreover, it is observed that the Kohlers rule, regardless of the field orientations, is violated in its normal state. This result suggests the loss of charge carriers in the normal state of this chain-containing compound, due presumably to the charge-density-wave fluctuations.
The major breakthroughs in the understanding of topological materials over the past decade were all triggered by the discovery of the Z$_2$ topological insulator (TI). In three dimensions (3D), the TI is classified as either strong or weak, and exper imental confirmations of the strong topological insulator (STI) rapidly followed the theoretical predictions. In contrast, the weak topological insulator has so far eluded experimental verification, since the topological surface states emerge only on particular side surfaces which are typically undetectable in real 3D crystals. Here we provide experimental evidence for the WTI state in a bismuth iodide, $beta$-Bi4I4. Significantly, the crystal has naturally cleavable top and side planes both stacked via van-der-Waals forces, which have long been desirable for the experimental realization of the WTI state. As a definitive signature of it, we find quasi-1D Dirac TSS at the side-surface (100) while the top-surface (001) is topologically dark. Furthermore, a crystal transition from the $beta$- to $alpha$-phase drives a topological phase transition from a nontrivial WTI to the trivial insulator around room temperature. This topological phase, viewed as quantum spin Hall (QSH) insulators stacked three-dimensionally, and excellent functionality with on/off switching will lay a foundation for new technology benefiting from highly directional spin-currents with large density protected against backscattering.
121 - E. Nakhmedov , R. Oppermann 2011
Effects of non-magnetic disorder on the critical temperature T_c and on diamagnetism of quasi-one-dimensional superconductors are reported. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between wires and that T_c vanishes discontinuously at a critical disorder-strength. The parallel and transverse components of the penetration-depth are evaluated. They diverge at different critical temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and phase-coherence breaking respectively. The interplay between disorder and quantum phase fluctuations is shown to result in quantum critical behavior at T=0, which manifests itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.
We report the charge doping of KCr$_3$As$_3$ via H intercalation. We show that the previously reported ethanol bath deintercalation of K$_2$Cr$_3$As$_3$ to KCr$_3$As$_3$ has a secondary effect whereby H from the bath enters the quasi-one-dimensional Cr$_6$As$_6$ chains. Furthermore, we find that - contrary to previous interpretations - the difference between non-superconducting as-grown KCr$_3$As$_3$ samples and superconducting hydrothermally annealed samples is not a change in crystallinity but due to charge doping, with the latter treatment increasing the H concentration in the CrAs tubes effectively electron-doping the 133 compound. These results suggest a new stoichiometry KH$_x$Cr$_3$As$_3$, that superconductivity arises from a suppressed magnetic order via a tunable parameter and pave the way for the first charge-doped phase diagram in these materials.
We report $^{133}$Cs NMR and $^{75}$As Nuclear Quadrupole Resonance (NQR) measurements on the normal metallic state above $T_c$ of a quasi-one-dimensional superconductor Cs$_2$Cr$_3$As$_3$ ($T_c < 1.6$~K). From the $^{133}$Cs NMR Knight shift $^{133} K$ measured at the Cs1 site, we show that the uniform spin susceptibility $chi_{spin}$ increases from 295~K to $sim$ 60~K, followed by a mild suppression; $chi_{spin}$ then levels off below $sim$10~K. In contrast, a vanishingly small magnitude of $^{133}K$ indicates that Cs2 sites contribute very little to electrical conduction and the exchange interactions between 3d electrons at Cr sites. Low frequency Cr spin dynamics, reflected on $^{75}$As $1/T_1T$ (the nuclear spin-lattice relaxation rate $1/T_1$ divided by temperature $T$), shows an analogous trend as $chi_{spin}$. Comparison with the results of $1/T_1T$ near $T_c$ with Rb$_2$Cr$_3$As$_3$ ($T_c=6.1$~K) and Rb$_2$Cr$_3$As$_3$ ($T_c=4.8$~K) establishes a systematic trend that substitution of K$^{+}$ ions with larger alkali ions progressively suppresses Cr spin fluctuations together with $T_c$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا