ترغب بنشر مسار تعليمي؟ اضغط هنا

$^{133}$Cs and $^{75}$As NMR investigation of the normal metallic state of the quasi-one-dimensional Cs$_2$Cr$_3$As$_3$

92   0   0.0 ( 0 )
 نشر من قبل Takashi Imai
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report $^{133}$Cs NMR and $^{75}$As Nuclear Quadrupole Resonance (NQR) measurements on the normal metallic state above $T_c$ of a quasi-one-dimensional superconductor Cs$_2$Cr$_3$As$_3$ ($T_c < 1.6$~K). From the $^{133}$Cs NMR Knight shift $^{133}K$ measured at the Cs1 site, we show that the uniform spin susceptibility $chi_{spin}$ increases from 295~K to $sim$ 60~K, followed by a mild suppression; $chi_{spin}$ then levels off below $sim$10~K. In contrast, a vanishingly small magnitude of $^{133}K$ indicates that Cs2 sites contribute very little to electrical conduction and the exchange interactions between 3d electrons at Cr sites. Low frequency Cr spin dynamics, reflected on $^{75}$As $1/T_1T$ (the nuclear spin-lattice relaxation rate $1/T_1$ divided by temperature $T$), shows an analogous trend as $chi_{spin}$. Comparison with the results of $1/T_1T$ near $T_c$ with Rb$_2$Cr$_3$As$_3$ ($T_c=6.1$~K) and Rb$_2$Cr$_3$As$_3$ ($T_c=4.8$~K) establishes a systematic trend that substitution of K$^{+}$ ions with larger alkali ions progressively suppresses Cr spin fluctuations together with $T_c$.



قيم البحث

اقرأ أيضاً

Following the discovery of superconductivity in quasi-one-dimensional K$_2$Cr$_3$As$_3$ containing [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ chains [J. K. Bao et al., arXiv: 1412.0067 (2014)], we succeeded in synthesizing an analogous compound, Rb$_2$Cr$_3$A s$_3$, which also crystallizes in a hexagonal lattice. The replacement of K by Rb results in an expansion of $a$ axis by 3%, indicating a weaker interchain coupling in Rb$_2$Cr$_3$As$_3$. Bulk superconductivity emerges at 4.8 K, above which the normal-state resistivity shows a linear temperature dependence up to 35 K. The estimated upper critical field at zero temperature exceeds the Pauli paramagnetic limit by a factor of two. Furthermore, the electronic specific-heat coefficient extrapolated to zero temperature in the mixed state increases with $sqrt{H}$, suggesting existence of nodes in the superconducting energy gap. Hence Rb$_2$Cr$_3$As$_3$ manifests itself as another example of unconventional superconductor in the Cr$_3$As$_3$-chain based system.
We present neutron total scattering and density functional theory studies on quasi-one-dimensional superconducting K$_2$Cr$_3$As$_3$ revealing a frustrated structural instability. Our first principles calculations find a significant phonon instabilit y which, under energy minimization, corresponds to a frustrated orthorhombic distortion. In diffraction studies we find large and temperature independent atomic displacement parameters which pair distribution analyses confirms and shows as resulting from highly localized orthorhombic distortions of the CrAs sublattice and coupled K displacements. These results suggest a far more complex phase diagram than previously assumed for this unusual superconductor with the likelihood of subtle interplays of structure, electron-phonon and magnetic interactions.
We report the discovery of bulk superconductivity (SC) at 6.1 K in a quasi-one-dimensional (Q1D) chromium pnictide K$_2$Cr$_3$As$_3$ which contains [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ double-walled subnano-tubes with face-sharing Cr$_{6/2}$ (As$_{6/2}$ ) octahedron linear chains in the inner (outer) wall. The material has a large electronic specific-heat coefficient of 70$sim$75 mJ K$^{-2}$ mol$^{-1}$, indicating significantly strong electron correlations. Signature of non-Fermi liquid behavior is shown by the linear temperature dependence of resistivity in a broad temperature range from 7 to 300 K. Unconventional SC is preliminarily manifested by the estimated upper critical field exceeding the Pauli limit by a factor of three to four. The title compound represents a rare example that possibly unconventional SC emerges in a Q1D system with strong electron correlations.
155 - H. Z. Zhi , T. Imai , F. L. Ning 2015
We report $^{75}$As NMR measurements on the new quasi one-dimensional superconductor K$_{2}$Cr$_{3}$As$_{3}$ ($T_{c} sim 6.1$~K) [J. K. Bao et al., Phys. Rev. X {bf 5}, 011013 (2015)]. We found evidence for strong enhancement of Cr spin fluctuations above $T_c$ in the [Cr$_{3}$As$_{3}$]$_{infty}$ double-walled subnano-tubes based on the nuclear spin-lattice relaxation rate $1/T_{1}$. The power law temperature dependence, $1/T_{1}T sim T^{-gamma}$ ($gamma sim 0.25$), is consistent with the Tomonaga-Luttinger liquid. Moreover, absence of the Hebel-Slichter coherence peak of $1/T_{1}$ just below $T_{c}$ suggests unconventional nature of superconductivity.
We present Angle-Resolved Photoemission Spectroscopy measurements of the quasi-one dimensional superconductor K$_2$Cr$_3$As$_3$. We find that the Fermi surface contains two Fermi surface sheets, with linearly dispersing bands not displaying any signi ficant band renormalizations. The one-dimensional band dispersions display a suppression of spectral intensity approaching the Fermi level according to a linear power law, over an energy range of ~200 meV. This is interpreted as a signature of Tomonoga-Luttinger liquid physics, which provides a new perspective on the possibly unconventional superconductivity in this family of compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا