ترغب بنشر مسار تعليمي؟ اضغط هنا

EPB-TBM tunnel under internal pressure: Assessment of serviceability

95   0   0.0 ( 0 )
 نشر من قبل Nicolas Agustin Labanda Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Mantanza-Riachuelo basin recovery is one of the most ambitious environmental projects under construction in Argentina. In this context, the sanitary bureau of the metropolitan area of Buenos Aires (AySA) is building a sewage collection network to transport the waste water of the population in the southern area of the city, composed by almost five million people. The most complex tunnel in this big project is named textit{Lot 3}, an outfall EPB-TBM tunnel starting at a shaft located at the textit{Rio de la Plata} margin and running under the river 12 km to a discharge area. The tunnel runs through soft clay belonging to the textit{post-pampeano} formation and dense sands of the textit{Puelchese} formation. In operation, it will be pressurized by a pumping station which will produce a piezometer head that, in the first 2000 m, might be eventually higher than the confining pressure around the tunnel. This paper presents the numerical analysis of the structural forces acting on the tunnel rings using a risk-oriented approach that considers the stochastic nature of materials, stratigraphy and tunnel-ground interaction. The compression of the lining is evaluated and compared with field measurements in order to predict the structural forces and the risk of the rings going into tension beyond the structural capacity of the system.



قيم البحث

اقرأ أيضاً

The damage characteristics of a shallow buried tunnel under multiple explosive loads is an important research issue in the design and evaluation of protective engineering. It is of great significance to develop a method for early warning of the safet y of the shallow buried features. The discrete element method is used to establish a mechanical model of the shallow buried tunnel. The South Load Equivalent Principle treats blast loads as a series of dynamic forces acting uniformly on the surface. Based on the discrete element method, the dynamic response after each blast load and the damage evolution process of the surrounding rock of the tunnel are obtained. The strength reduction method is used to obtain the surrounding rock of the tunnel. Introduce the theory of continuous homology, and use the mathematical method of continuous homology to quantitatively and qualitatively analyze the failure characteristics of the discrete element model under multiple explosive loads. The results show that the method of continuous homology can accurately reflect the topological characteristics of the surrounding rock of the tunnel The maximum one-dimensional bar code connection radius can effectively warn tunnel instability. This provides a new mathematical method for tunnel safety design and disaster prediction research.
87 - Y. Yang 2017
The dissolution of porous media in a geologic formation induced by the injection of massive amounts of CO2 can undermine the mechanical stability of the formation structure before carbon mineralization takes place. The geomechanical impact of geologi c carbon storage is therefore closely related to the structural sustainability of the chosen reservoir as well as the probability of buoyancy driven CO2 leakage through caprocks. Here we show, with a combination of ex situ nanotomography and in situ microtomography, that the presence of dissolved CO2 in water produces a homogeneous dissolution pattern in natural chalk microstructure. This pattern stems from a greater apparent solubility of chalk and therefore a greater reactive subvolume in a sample. When a porous medium dissolves homogeneously in an imposed flow field, three geomechanical effects were observed: material compaction, fracturing and grain relocation. These phenomena demonstrated distinct feedbacks to the migration of the dissolution front and severely complicated the infiltration instability problem. We conclude that the presence of dissolved CO2 makes the dissolution front less susceptible to spatial and temporal perturbations in the strongly coupled geochemical and geomechanical processes.
Activation of the soil surrounding the ESS accelerator tunnel calculated by the MARS15 code is presented. A detailed composition of the soil, that comprises about 30 different chemical elements, is considered. Spatial distributions of the produced ac tivity are provided in both transverse and longitudinal direction. A realistic irradiation profile for the entire planned lifetime of the facility is used. The nuclear transmutation and decay of the produced radionuclides is calculated with the DeTra code which is a built-in tool for the MARS15 code. Radionuclide production by low-energy neutrons is calculated using the ENDF/B-VII evaluated nuclear data library. In order to estimate quality of this activation assessment, a comparison between calculated and measured activation of various foils in a similar radiation environment is presented.
The quest for a better understanding of the cancer risk associated with drinking the radium-contaminated groundwater of the Disi Aquifer in Jordan has become more urgent in recent years. To quantitively identify the health consequences attainable fro m the consumption of this groundwater source, internal dosimetry analysis was performed with emphasis on doses deliverable to bone surfaces. Moreover, the age-dependent dose calculations performed in this study show that the most critical group is those who are below the age of 15, where we predict an increase in the risk of cancer by up to a factor of 5 as compared to adults. It is also demonstrated that radium radioactivity remains relatively constant in the bone even 10 years after ingestion. The whole-body dose analysis concluded that it is a factor of 5 higher than what the WHO recommends as a limit.
122 - Atsushi Hariki , Kyo-Hoon Ahn , 2021
We present a computational study of PbCoO$_3$ at ambient and elevated pressure. We employ the static and dynamic treatment of local correlation in form of density functional theory + $U$ (DFT+$U$) and + dynamical mean-field theory (DFT+DMFT). Our res ults capture the experimentally observed crystal structures and identify the unsaturated Pb $6s$ - O $2p$ bonds as the driving force beyond the complex physics of PbCoO$_3$. We provide a geometrical analysis of the structural distortions and discuss their implications, in particular, the internal doping, which triggers transition between phases with and without local moments and a site selective Mott transition in the low-pressure phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا