ﻻ يوجد ملخص باللغة العربية
We present a computational study of PbCoO$_3$ at ambient and elevated pressure. We employ the static and dynamic treatment of local correlation in form of density functional theory + $U$ (DFT+$U$) and + dynamical mean-field theory (DFT+DMFT). Our results capture the experimentally observed crystal structures and identify the unsaturated Pb $6s$ - O $2p$ bonds as the driving force beyond the complex physics of PbCoO$_3$. We provide a geometrical analysis of the structural distortions and discuss their implications, in particular, the internal doping, which triggers transition between phases with and without local moments and a site selective Mott transition in the low-pressure phase.
Tailoring transport properties of strongly correlated electron systems in a controlled fashion counts among the dreams of materials scientists. In copper oxides, varying the carrier concentration is a tool to obtain high-temperature superconducting p
We study the electronic structure, magnetic state, and phase stability of paramagnetic BiNiO$_3$ near a pressure-induced Mott insulator-to-metal transition (MIT) by employing a combination of density functional and dynamical mean-field theory. We obt
While defects such as oxygen vacancies in correlated materials can modify their electronic properties dramatically, understanding the microscopic origin of electronic correlations in materials with defects has been elusive. Lanthanum nickelate with o
The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation + Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo
We compute the electronic structure, spin and charge state of Fe ions, and structural phase stability of paramagnetic CaFeO$_3$ under pressure using a fully self-consistent in charge density DFT+dynamical mean-field theory method. We show that at amb