ترغب بنشر مسار تعليمي؟ اضغط هنا

On Multitask Loss Function for Audio Event Detection and Localization

274   0   0.0 ( 0 )
 نشر من قبل Huy Phan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Audio event localization and detection (SELD) have been commonly tackled using multitask models. Such a model usually consists of a multi-label event classification branch with sigmoid cross-entropy loss for event activity detection and a regression branch with mean squared error loss for direction-of-arrival estimation. In this work, we propose a multitask regression model, in which both (multi-label) event detection and localization are formulated as regression problems and use the mean squared error loss homogeneously for model training. We show that the common combination of heterogeneous loss functions causes the network to underfit the data whereas the homogeneous mean squared error loss leads to better convergence and performance. Experiments on the development and validation sets of the DCASE 2020 SELD task demonstrate that the proposed system also outperforms the DCASE 2020 SELD baseline across all the detection and localization metrics, reducing the overall SELD error (the combined metric) by approximately 10% absolute.



قيم البحث

اقرأ أيضاً

We propose a method to address audio-visual target speaker enhancement in multi-talker environments using event-driven cameras. State of the art audio-visual speech separation methods shows that crucial information is the movement of the facial landm arks related to speech production. However, all approaches proposed so far work offline, using frame-based video input, making it difficult to process an audio-visual signal with low latency, for online applications. In order to overcome this limitation, we propose the use of event-driven cameras and exploit compression, high temporal resolution and low latency, for low cost and low latency motion feature extraction, going towards online embedded audio-visual speech processing. We use the event-driven optical flow estimation of the facial landmarks as input to a stacked Bidirectional LSTM trained to predict an Ideal Amplitude Mask that is then used to filter the noisy audio, to obtain the audio signal of the target speaker. The presented approach performs almost on par with the frame-based approach, with very low latency and computational cost.
Automated Audio captioning (AAC) is a cross-modal translation task that aims to use natural language to describe the content of an audio clip. As shown in the submissions received for Task 6 of the DCASE 2021 Challenges, this problem has received inc reasing interest in the community. The existing AAC systems are usually based on an encoder-decoder architecture, where the audio signal is encoded into a latent representation, and aligned with its corresponding text descriptions, then a decoder is used to generate the captions. However, training of an AAC system often encounters the problem of data scarcity, which may lead to inaccurate representation and audio-text alignment. To address this problem, we propose a novel encoder-decoder framework called Contrastive Loss for Audio Captioning (CL4AC). In CL4AC, the self-supervision signals derived from the original audio-text paired data are used to exploit the correspondences between audio and texts by contrasting samples, which can improve the quality of latent representation and the alignment between audio and texts, while trained with limited data. Experiments are performed on the Clotho dataset to show the effectiveness of our proposed approach.
This paper presents our work of training acoustic event detection (AED) models using unlabeled dataset. Recent acoustic event detectors are based on large-scale neural networks, which are typically trained with huge amounts of labeled data. Labels fo r acoustic events are expensive to obtain, and relevant acoustic event audios can be limited, especially for rare events. In this paper we leverage an Internet-scale unlabeled dataset with potential domain shift to improve the detection of acoustic events. Based on the classic tri-training approach, our proposed method shows accuracy improvement over both the supervised training baseline, and semisupervised self-training set-up, in all pre-defined acoustic event detection tasks. As our approach relies on ensemble models, we further show the improvements can be distilled to a single model via knowledge distillation, with the resulting single student model maintaining high accuracy of teacher ensemble models.
This paper proposes a network architecture mainly designed for audio tagging, which can also be used for weakly supervised acoustic event detection (AED). The proposed network consists of a modified DenseNet as the feature extractor, and a global ave rage pooling (GAP) layer to predict frame-level labels at inference time. This architecture is inspired by the work proposed by Zhou et al., a well-known framework using GAP to localize visual objects given image-level labels. While most of the previous works on weakly supervised AED used recurrent layers with attention-based mechanism to localize acoustic events, the proposed network directly localizes events using the feature map extracted by DenseNet without any recurrent layers. In the audio tagging task of DCASE 2017, our method significantly outperforms the state-of-the-art method in F1 score by 5.3% on the dev set, and 6.0% on the eval set in terms of absolute values. For weakly supervised AED task in DCASE 2018, our model outperforms the state-of-the-art method in event-based F1 by 8.1% on the dev set, and 0.5% on the eval set in terms of absolute values, by using data augmentation and tri-training to leverage unlabeled data.
Weakly Labelled learning has garnered lot of attention in recent years due to its potential to scale Sound Event Detection (SED) and is formulated as Multiple Instance Learning (MIL) problem. This paper proposes a Multi-Task Learning (MTL) framework for learning from Weakly Labelled Audio data which encompasses the traditional MIL setup. To show the utility of proposed framework, we use the input TimeFrequency representation (T-F) reconstruction as the auxiliary task. We show that the chosen auxiliary task de-noises internal T-F representation and improves SED performance under noisy recordings. Our second contribution is introducing two step Attention Pooling mechanism. By having 2-steps in attention mechanism, the network retains better T-F level information without compromising SED performance. The visualisation of first step and second step attention weights helps in localising the audio-event in T-F domain. For evaluating the proposed framework, we remix the DCASE 2019 task 1 acoustic scene data with DCASE 2018 Task 2 sounds event data under 0, 10 and 20 db SNR resulting in a multi-class Weakly labelled SED problem. The proposed total framework outperforms existing benchmark models over all SNRs, specifically 22.3 %, 12.8 %, 5.9 % improvement over benchmark model on 0, 10 and 20 dB SNR respectively. We carry out ablation study to determine the contribution of each auxiliary task and 2-step Attention Pooling to the SED performance improvement. The code is publicly released

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا