ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of eigenstate expectation values with system size

79   0   0.0 ( 0 )
 نشر من قبل Yichen Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yichen Huang




اسأل ChatGPT حول البحث

Understanding the asymptotic behavior of physical quantities in the thermodynamic limit is a fundamental problem in statistical mechanics. In this paper, we study how fast the eigenstate expectation values of a local operator converge to a smooth function of energy density as the system size diverges. In translationally invariant systems in any spatial dimension, we prove that for all but a measure zero set of local operators, the deviations of finite-size eigenstate expectation values from the aforementioned smooth function are lower bounded by $1/O(N)$, where $N$ is the system size. The lower bound holds regardless of the integrability or chaoticity of the model, and is tight in systems satisfying the eigenstate thermalization hypothesis.



قيم البحث

اقرأ أيضاً

We consider the model of random sequential adsorption, with depositing objects, as well as those already at the surface, decreasing in size according to a specified time dependence, from a larger initial value to a finite value in the large time limi t. Numerical Monte Carlo simulations of two-dimensional deposition of disks and one-dimensional deposition of segments are reported for the density-density correlation function and gap-size distribution function, respectively. Analytical considerations supplement numerical results in the one-dimensional case. We investigate the correlation hole - the depletion of correlation functions near contact and, for the present model, their vanishing at contact - that opens up at finite times, as well as its closing and reemergence of the logarithmic divergence of correlation properties at contact in the large time limit.
We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresp onding respectively to frictions going to zero or infinity) are carefully investigated. In particular, the maximal magnitude of admissible perturbations are quantified as a function of the friction. Numerical results based on a Galerkin discretization of the generator of the dynamics confirm the theoretical lower bounds on the spectral gap.
We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in t erms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramms left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical operators are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamilt onian structure of Ehrenfests theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the `Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated to another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models previously appeared in the chemical physics literature.
We consider a monomer-dimer system with a strong attractive dimer-dimer interaction that favors alignment. In 1979, Heilmann and Lieb conjectured that this model should exhibit a nematic liquid crystal phase, in which the dimers are mostly aligned, b ut do not manifest any translational order. We prove this conjecture for large dimer activity and strong interactions. The proof follows a Pirogov-Sinai scheme, in which we map the dimer model to a system of hard-core polymers whose partition function is computed using a convergent cluster expansion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا