ﻻ يوجد ملخص باللغة العربية
The study of topological properties by machine learning approaches has attracted considerable interest recently. Here we propose machine learning the topological invariants that are unique in non-Hermitian systems. Specifically, we train neural networks to predict the winding of eigenvalues of four prototypical non-Hermitian Hamiltonians on the complex energy plane with nearly $100%$ accuracy. Our demonstrations in the non-Hermitian Hatano-Nelson model, Su-Schrieffer-Heeger model and generalized Aubry-Andre-Harper model in one dimension, and two-dimensional Dirac fermion model with non-Hermitian terms show the capability of the neural networks in exploring topological invariants and the associated topological phase transitions and topological phase diagrams in non-Hermitian systems. Moreover, the neural networks trained by a small data set in the phase diagram can successfully predict topological invariants in untouched phase regions. Thus, our work paves the way to revealing non-Hermitian topology with the machine learning toolbox.
The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions re
Recent studies of disorder or non-Hermiticity induced topological insulators inject new ingredients for engineering topological matter. Here we consider the effect of purely non-Hermitian disorders, a combination of these two ingredients, in a 1D chi
We investigate the localization and topological transitions in a one-dimensional (interacting) non-Hermitian quasiperiodic lattice, which is described by a generalized Aubry-Andr{e}-Harper model with irrational modulations in the off-diagonal hopping
The breakdown of the bulk-boundary correspondence in non-Hermitian (NH) topological systems is an open, controversial issue. In this paper, to resolve this issue, we ask the following question: Can a (global) topological invariant completely describe
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system, giving rise to intriguing quantum states of matter. The rich interplay of disorder, non-Hermiticity, and topology is epitomized by the r