ﻻ يوجد ملخص باللغة العربية
The breakdown of the bulk-boundary correspondence in non-Hermitian (NH) topological systems is an open, controversial issue. In this paper, to resolve this issue, we ask the following question: Can a (global) topological invariant completely describe the topological properties of a NH system as its Hermitian counterpart? Our answer is no. One cannot use a global topological invariant (including non-Bloch topological invariant) to accurately characterize the topological properties of the NH systems. Instead, there exist a new type of topological invariants that are absence in its Hermitian counterpart -- the state dependent topological invariants. With the help of the state-dependent topological invariants, we develop a new topological theory for NH topological system beyond the general knowledge for usual Hermitian systems and obtain an exact formulation of the bulk-boundary correspondence, including state-dependent phase diagram, state-dependent phase transition and anomalous transport properties (spontaneous topological current). Therefore, these results will help people to understand the exotic topological properties of various non-Hermitian systems.
The hallmark of symmetry-protected topological (SPT) phases is the existence of anomalous boundary states, which can only be realized with the corresponding bulk system. In this work, we show that for every Hermitian anomalous boundary mode of the te
A modified periodic boundary condition adequate for non-hermitian topological systems is proposed. Under this boundary condition a topological number characterizing the system is defined in the same way as in the corresponding hermitian system and he
The bulk-boundary correspondence is a generic feature of topological states of matter, reflecting the intrinsic relation between topological bulk and boundary states. For example, robust edge states propagate along the edges and corner states gather
In Hermitian topological systems, the bulk-boundary correspondence strictly constraints boundary transport to values determined by the topological properties of the bulk. We demonstrate that this constraint can be lifted in non-Hermitian Floquet insu
Bulk-boundary correspondence, connecting the bulk topology and the edge states, is an essential principle of the topological phases. However, the bulk-boundary correspondence is broken down in general non-Hermitian systems. In this paper, we construc