ﻻ يوجد ملخص باللغة العربية
Given $m$ $d$-dimensional responsors and $n$ $d$-dimensional predictors, sparse regression finds at most $k$ predictors for each responsor for linear approximation, $1leq k leq d-1$. The key problem in sparse regression is subset selection, which usually suffers from high computational cost. Recent years, many improved approximate methods of subset selection have been published. However, less attention has been paid on the non-approximate method of subset selection, which is very necessary for many questions in data analysis. Here we consider sparse regression from the view of correlation, and propose the formula of conditional uncorrelation. Then an efficient non-approximate method of subset selection is proposed in which we do not need to calculate any coefficients in regression equation for candidate predictors. By the proposed method, the computational complexity is reduced from $O(frac{1}{6}{k^3}+mk^2+mkd)$ to $O(frac{1}{6}{k^3}+frac{1}{2}mk^2)$ for each candidate subset in sparse regression. Because the dimension $d$ is generally the number of observations or experiments and large enough, the proposed method can greatly improve the efficiency of non-approximate subset selection.
Major complications arise from the recent increase in the amount of high-dimensional data, including high computational costs and memory requirements. Feature selection, which identifies the most relevant and informative attributes of a dataset, has
We propose a sparse and low-rank tensor regression model to relate a univariate outcome to a feature tensor, in which each unit-rank tensor from the CP decomposition of the coefficient tensor is assumed to be sparse. This structure is both parsimonio
We introduce supervised feature ranking and feature subset selection algorithms for multivariate time series (MTS) classification. Unlike most existing supervised/unsupervised feature selection algorithms for MTS our techniques do not require a featu
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $ell_0$ pseudo norm is able to
Conditional Neural Processes (CNP; Garnelo et al., 2018) are an attractive family of meta-learning models which produce well-calibrated predictions, enable fast inference at test time, and are trainable via a simple maximum likelihood procedure. A li