ﻻ يوجد ملخص باللغة العربية
Topological phases supported by quasi-periodic spin-chain models and their bulk-boundary principles are investigated by numerical and K-theoretic methods. We show that, for both the un-correlated and correlated phases, the operator algebras that generate the Hamiltonians are non-commutative tori, hence the quasi-periodic chains display physics akin to the quantum Hall effect in two and higher dimensions. The robust topological edge modes are found to be strongly shaped by the interaction and, generically, they have hybrid edge-localized and chain-delocalized structures. Our findings lay the foundations for topological spin pumping using the phason of a quasi-periodic pattern as an adiabatic parameter, where selectively chosen quantized bits of magnetization can be transferred from one edge of the chain to the other.
Quasi-periodic quantum spin chains were recently found to support many topological phases in the finite magnetization sectors. They can simulate strong topological phases from class A in arbitrary dimension that are characterized by first and higher
We establish a direct connection between inhomogeneous XX spin chains (or free fermion systems with nearest-neighbors hopping) and certain QES models on the line giving rise to a family of weakly orthogonal polynomials. We classify all such models an
We study quantum phase transitions between competing orders in one-dimensional spin systems. We focus on systems that can be mapped to a dual-field double sine-Gordon model as a bosonized effective field theory. This model contains two pinning potent
We report the synthesis and systematic studies of a new layered ternary telluride TaPdTe5 with quasi-one-dimensional PdTe2 chains. This compound crystalizes in a layered orthorhombic structure with space group Cmcm. Analysis of its curved field-depen
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically