ﻻ يوجد ملخص باللغة العربية
Federated Learning (FL) allows multiple participants to train machine learning models collaboratively by keeping their datasets local and only exchanging model updates. Alas, recent work highlighted several privacy and robustness weaknesses in FL, presenting, respectively, membership/property inference and backdoor attacks. In this paper, we investigate to what extent Differential Privacy (DP) can be used to protect not only privacy but also robustness in FL. We present a first-of-its-kind empirical evaluation of Local and Central Differential Privacy (LDP/CDP) techniques in FL, assessing their feasibility and effectiveness. We show that both DP variants do defend against backdoor attacks, with varying levels of protection and utility, and overall much more effectively than previously proposed defenses. They also mitigate white-box membership inference attacks in FL, and our work is the first to show how effectively; neither, however, provides viable defenses against property inference. Our work also provides a re-usable measurement framework to quantify the trade-offs between robustness/privacy and utility in differentially private FL.
In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in
In spite that Federated Learning (FL) is well known for its privacy protection when training machine learning models among distributed clients collaboratively, recent studies have pointed out that the naive FL is susceptible to gradient leakage attac
Federated learning (FL) is a training paradigm where the clients collaboratively learn models by repeatedly sharing information without compromising much on the privacy of their local sensitive data. In this paper, we introduce federated $f$-differen
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds.
In federated learning, machine learning and deep learning models are trained globally on distributed devices. The state-of-the-art privacy-preserving technique in the context of federated learning is user-level differential privacy. However, such a m