ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated $f$-Differential Privacy

98   0   0.0 ( 0 )
 نشر من قبل Shuxiao Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) is a training paradigm where the clients collaboratively learn models by repeatedly sharing information without compromising much on the privacy of their local sensitive data. In this paper, we introduce federated $f$-differential privacy, a new notion specifically tailored to the federated setting, based on the framework of Gaussian differential privacy. Federated $f$-differential privacy operates on record level: it provides the privacy guarantee on each individual record of one clients data against adversaries. We then propose a generic private federated learning framework {PriFedSync} that accommodates a large family of state-of-the-art FL algorithms, which provably achieves federated $f$-differential privacy. Finally, we empirically demonstrate the trade-off between privacy guarantee and prediction performance for models trained by {PriFedSync} in computer vision tasks.



قيم البحث

اقرأ أيضاً

The high demand of artificial intelligence services at the edges that also preserve data privacy has pushed the research on novel machine learning paradigms that fit those requirements. Federated learning has the ambition to protect data privacy thro ugh distributed learning methods that keep the data in their data silos. Likewise, differential privacy attains to improve the protection of data privacy by measuring the privacy loss in the communication among the elements of federated learning. The prospective matching of federated learning and differential privacy to the challenges of data privacy protection has caused the release of several software tools that support their functionalities, but they lack of the needed unified vision for those techniques, and a methodological workflow that support their use. Hence, we present the Sherpa.ai Federated Learning framework that is built upon an holistic view of federated learning and differential privacy. It results from the study of how to adapt the machine learning paradigm to federated learning, and the definition of methodological guidelines for developing artificial intelligence services based on federated learning and differential privacy. We show how to follow the methodological guidelines with the Sherpa.ai Federated Learning framework by means of a classification and a regression use cases.
Federated learning is emerging as a machine learning technique that trains a model across multiple decentralized parties. It is renowned for preserving privacy as the data never leaves the computational devices, and recent approaches further enhance its privacy by hiding messages transferred in encryption. However, we found that despite the efforts, federated learning remains privacy-threatening, due to its interactive nature across different parties. In this paper, we analyze the privacy threats in industrial-level federated learning frameworks with secure computation, and reveal such threats widely exist in typical machine learning models such as linear regression, logistic regression and decision tree. For the linear and logistic regression, we show through theoretical analysis that it is possible for the attacker to invert the entire private input of the victim, given very few information. For the decision tree model, we launch an attack to infer the range of victims private inputs. All attacks are evaluated on popular federated learning frameworks and real-world datasets.
When it comes to large-scale multi-agent systems with a diverse set of agents, traditional differential privacy (DP) mechanisms are ill-matched because they consider a very broad class of adversaries, and they protect all users, independent of their characteristics, by the same guarantee. Achieving a meaningful privacy leads to pronounced reduction in solution quality. Such assumptions are unnecessary in many real-world applications for three key reasons: (i) users might be willing to disclose less sensitive information (e.g., city of residence, but not exact location), (ii) the attacker might posses auxiliary information (e.g., city of residence in a mobility-on-demand system, or reviewer expertise in a paper assignment problem), and (iii) domain characteristics might exclude a subset of solutions (an expert on auctions would not be assigned to review a robotics paper, thus there is no need for indistinguishably between reviewers on different fields). We introduce Piecewise Local Differential Privacy (PLDP), a privacy model designed to protect the utility function in applications where the attacker possesses additional information on the characteristics of the utility space. PLDP enables a high degree of privacy, while being applicable to real-world, unboundedly large settings. Moreover, we propose PALMA, a privacy-preserving heuristic for maximum-weight matching. We evaluate PALMA in a vehicle-passenger matching scenario using real data and demonstrate that it provides strong privacy, $varepsilon leq 3$ and a median of $varepsilon = 0.44$, and high quality matchings ($10.8%$ worse than the non-private optimal).
Quantum machine learning (QML) can complement the growing trend of using learned models for a myriad of classification tasks, from image recognition to natural speech processing. A quantum advantage arises due to the intractability of quantum operati ons on a classical computer. Many datasets used in machine learning are crowd sourced or contain some private information. To the best of our knowledge, no current QML models are equipped with privacy-preserving features, which raises concerns as it is paramount that models do not expose sensitive information. Thus, privacy-preserving algorithms need to be implemented with QML. One solution is to make the machine learning algorithm differentially private, meaning the effect of a single data point on the training dataset is minimized. Differentially private machine learning models have been investigated, but differential privacy has yet to be studied in the context of QML. In this study, we develop a hybrid quantum-classical model that is trained to preserve privacy using differentially private optimization algorithm. This marks the first proof-of-principle demonstration of privacy-preserving QML. The experiments demonstrate that differentially private QML can protect user-sensitive information without diminishing model accuracy. Although the quantum model is simulated and tested on a classical computer, it demonstrates potential to be efficiently implemented on near-term quantum devices (noisy intermediate-scale quantum [NISQ]). The approachs success is illustrated via the classification of spatially classed two-dimensional datasets and a binary MNIST classification. This implementation of privacy-preserving QML will ensure confidentiality and accurate learning on NISQ technology.
Federated learning (FL) has been proposed to allow collaborative training of machine learning (ML) models among multiple parties where each party can keep its data private. In this paradigm, only model updates, such as model weights or gradients, are shared. Many existing approaches have focused on horizontal FL, where each party has the entire feature set and labels in the training data set. However, many real scenarios follow a vertically-partitioned FL setup, where a complete feature set is formed only when all the datasets from the parties are combined, and the labels are only available to a single party. Privacy-preserving vertical FL is challenging because complete sets of labels and features are not owned by one entity. Existing approaches for vertical FL require multiple peer-to-peer communications among parties, leading to lengthy training times, and are restricted to (approximated) linear models and just two parties. To close this gap, we propose FedV, a framework for secure gradient computation in vertical settings for several widely used ML models such as linear models, logistic regression, and support vector machines. FedV removes the need for peer-to-peer communication among parties by using functional encryption schemes; this allows FedV to achieve faster training times. It also works for larger and changing sets of parties. We empirically demonstrate the applicability for multiple types of ML models and show a reduction of 10%-70% of training time and 80% to 90% in data transfer with respect to the state-of-the-art approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا