ﻻ يوجد ملخص باللغة العربية
We present quantum algorithms, for Hamiltonians of linear combinations of local unitary operators, for Hamiltonian matrix-vector products and for preconditioning with the inverse of shifted reduced Hamiltonian operator that contributes to the diagonal matrix elements only. The algorithms implement a convergent series of approximations towards the exact solution of the full CI (configuration interaction) problem. The algorithm scales with O(m^5 ), with m the number of one-electron orbitals in the case of molecular electronic structure calculations. Full CI results can be obtained with a scaling of O(nm^5 ), with n the number of electrons and a prefactor on the order of 10 to 20. With low orders of Hamiltonian matrix-vector products, a whole repertoire of approximations widely used in modern electronic structure theory, including various orders of perturbation theory and/or truncated CI at different orders of excitations can be implemented for quantum computing for both routine and benchmark results at chemical accuracy. The lowest order matrix-vector product with preconditioning, basically the second-order perturbation theory, is expected to be a leading algorithm for demonstrating quantum supremacy for Ab Initio simulations, one of the most anticipated real world applications. The algorithm is also applicable for the hybrid variational quantum eigensolver.
In quantum mechanics the eigenstates of the Hamiltonian form a complete basis. However, physicists conventionally express completeness as a formal sum over the eigenstates, and this sum is typically a divergent series if the Hilbert space is infinite
We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent dis
The open spin-1/2 XXZ spin chain with diagonal boundary magnetic fields is the paradigmatic example of a quantum integrable model with open boundary conditions. We formulate a quantum algorithm for preparing Bethe states of this model, corresponding
The Schr{o}dinger equation is solved exactly for some well known potentials. Solutions are obtained reducing the Schr{o}dinger equation into a second order differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov
Quantum simulations of electronic structure with transformed ab initio Hamiltonians that include some electron correlation effects a priori are demonstrated. The transcorrelated Hamiltonians used in this work are efficiently constructed classically,