ترغب بنشر مسار تعليمي؟ اضغط هنا

A General Approach for the Exact Solution of the Schrodinger Equation

263   0   0.0 ( 0 )
 نشر من قبل Ramazan Sever
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Schr{o}dinger equation is solved exactly for some well known potentials. Solutions are obtained reducing the Schr{o}dinger equation into a second order differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get energy eigenvalues and the corresponding wave functions.



قيم البحث

اقرأ أيضاً

We solve rigorously the time dependent Schrodinger equation describing electron emission from a metal surface by a laser field perpendicular to the surface. We consider the system to be one-dimensional, with the half-line $x<0$ corresponding to the b ulk of the metal and $x>0$ to the vacuum. The laser field is modeled as a classical electric field oscillating with frequency $omega$, acting only at $x>0$. We consider an initial condition which is a stationary state of the system without a field, and, at time $t=0$, the field is switched on. We prove the existence of a solution $psi(x,t)$ of the Schrodinger equation for $t>0$, and compute the surface current. The current exhibits a complex oscillatory behavior, which is not captured by the simple three step scenario. As $ttoinfty$, $psi(x,t)$ converges with a rate $t^{-frac32}$ to a time periodic function with period $frac{2pi}{omega}$ which coincides with that found by Faisal, Kaminski and Saczuk (Phys Rev A 72, 023412, 2015). However, for realistic values of the parameters, we have found that it can take quite a long time (over 50 laser periods) for the system to converge to its asymptote. Of particular physical importance is the current averaged over a laser period $frac{2pi}omega$, which exhibits a dramatic increase when $hbaromega$ becomes larger than the work function of the metal, which is consistent with the original photoelectric effect.
A general form of the effective mass Schrodinger equation is solved exactly for Hulthen potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function.
Effective mass Schrodinger equation is solved exactly for a given potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function. The e ffective mass Schrodinger equation is also solved for the Morse potential transforming to the constant mass Schr{o}dinger equation for a potential. One can also get solution of the effective mass Schrodinger equation starting from the constant mass Schrodinger equation.
For the two-dimensional Schrodinger equation, the general form of the point transformations such that the result can be interpreted as a Schrodinger equation with effective (i.e. position dependent) mass is studied. A wide class of such models with d ifferent forms of mass function is obtained in this way. Starting from the solvable two-dimensional model, the variety of solvable partner models with effective mass can be built. Several illustrating examples not amenable to the conventional separation of variables are given.
It is well known that a suggestive relation exists that links Schrodingers equation (SE) to the information-optimizing principle based on Fishers information measure (FIM). The connection entails the existence of a Legendre transform structure underl ying the SE. Here we show that appeal to this structure leads to a first order differential equation for the SEs eigenvalues that, in certain cases, can be used to obtain the eigenvalues without explicitly solving SE. Complying with the above mentioned equation constitutes a necessary condition to be satisfied by an energy eigenvalue. We show that the general solution is unique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا