ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-irreversibility in the classical many-body system in the hydrodynamic limit

302   0   0.0 ( 0 )
 نشر من قبل Gyula Toth
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gyula I. Toth




اسأل ChatGPT حول البحث

In this paper, exact continuum equations are derived to the classical many-body system in the hydrodynamic limit without the utilisation of statistical mechanics. It is shown that the resulting equations are universal for a class of pair potentials, and, unlike in statistical mechanics based coarse-grained models, the momentum density field carries the temperature. Evidence for the presence of pseudo time-irreversible equilibration, heat and momentum transport is provided by analysing numerical solutions of the dynamical equations. The numerical solutions further indicate the presence of non-diffusional relaxation of the macroscopic order, which raises questions about the completeness of the classical many-body dynamics in regards of the second law of thermodynamics.



قيم البحث

اقرأ أيضاً

We study synchronisation between periodically driven, interacting classical spins undergoing a Hamiltonian dynamics. In the thermodynamic limit there is a transition between a regime where all the spins oscillate synchronously for an infinite time wi th a period twice as the driving period (synchronized regime) and a regime where the oscillations die after a finite transient (chaotic regime). We emphasize the peculiarity of our result, having been synchronisation observed so far only in driven-dissipative systems. We discuss how our findings can be interpreted as a period-doubling time crystal and we show that synchronisation can appear both for an overall regular and an overall chaotic dynamics.
We study the statistics of the work done, the fluctuation relations and the irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our ideas by considering a transverse quantum Ising model that is taken out of equilibrium by the instantaneous switching of the transverse field.
We introduce a semi-classical limit for many-body localization in the absence of global symmetries. Microscopically, this limit is realized by disordered Floquet circuits composed of Clifford gates. In $d=1$, the resulting dynamics are always many-bo dy localized with a complete set of strictly local integrals of motion. In $dgeq 2$, the system realizes both localized and delocalized phases separated by a continuous transition in which ergodic puddles percolate. We argue that the phases are stable to deformations away from the semi-classical limit and estimate the resulting phase boundary. The Clifford circuit model is a distinct tractable limit from that of free fermions and suggests bounds on the critical exponents for the generic transition.
We present a semiclassical treatment of one-dimensional many-body quantum systems in equilibrium, where quantum corrections to the classical field approximation are systematically included by a renormalization of the classical field parameters. Our s emiclassical approximation is reliable in the limit of weak interactions and high temperatures. As a specific example, we apply our method to the interacting Bose gas and study experimentally observable quantities, such as correlation functions of bosonic fields and the full counting statistics of the number of particles in an interval. Where possible, our method is checked against exact results derived from integrability, showing excellent agreement.
We study the dynamics of the statistics of the energy transferred across a point along a quantum chain which is prepared in the inhomogeneous initial state obtained by joining two identical semi-infinite parts thermalized at two different temperature s. In particular, we consider the transverse field Ising and harmonic chains as prototypical models of non-interacting fermionic and bosonic excitations, respectively. Within the so-called hydrodynamic limit of large space-time scales we first discuss the mean values of the energy density and current, and then, aiming at the statistics of fluctuations, we calculate exactly the scaled cumulant generating function of the transferred energy. From the latter, the evolution of the associated large deviation function is obtained. A natural interpretation of our results is provided in terms of a semi-classical picture of quasi-particles moving ballistically along classical trajectories. Similarities and differences between the transferred energy scaled cumulant and the large deviation functions in the cases of non-interacting fermions and bosons are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا