ﻻ يوجد ملخص باللغة العربية
We present a semiclassical treatment of one-dimensional many-body quantum systems in equilibrium, where quantum corrections to the classical field approximation are systematically included by a renormalization of the classical field parameters. Our semiclassical approximation is reliable in the limit of weak interactions and high temperatures. As a specific example, we apply our method to the interacting Bose gas and study experimentally observable quantities, such as correlation functions of bosonic fields and the full counting statistics of the number of particles in an interval. Where possible, our method is checked against exact results derived from integrability, showing excellent agreement.
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) th
We show that the onset of quantum chaos at infinite temperature in two many-body 1D lattice models, the perturbed spin-1/2 XXZ and Anderson models, is characterized by universal behavior. Specifically, we show that the onset of quantum chaos is marke
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady stat
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance
Non-locality is a fundamental trait of quantum many-body systems, both at the level of pure states, as well as at the level of mixed states. Due to non-locality, mixed states of any two subsystems are correlated in a stronger way than what can be acc