ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization and Space Charge Limited Current in III-Nitride Heterostructure Nanowires

157   0   0.0 ( 0 )
 نشر من قبل Michael Mastro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An undoped AlGaN/GaN nanowire demonstrated p-type conductivity based solely on the formation of hole carriers in response to the negative polarization field at the (000-1) AlGaN/GaN facet. A transistor based on this nanowire displayed a low-voltage transition from Ohmic to space charge limited conduction. A numerical simulation showed that a highly asymmetric strain exists across the triangular cross-section, which creates a doublet peak in the piezoelectric induced polarization sheet charge at the (000-1) facet. Additionally, there is a strong interplay between the charge at the (000-1) AlGaN/GaN interface with depletion from the three surfaces as well as an interaction with the opposing polarization fields at two semi-polar {-110-1} facets. The charge distribution and resultant conduction regime is highly interdependent on configuration of the multi-layer structure, and is not amenable to an analytical model.



قيم البحث

اقرأ أيضاً

We studied electric current and noise in planar GaN nanowires (NWs). The results obtained at low voltages provide us with estimates of the depletion effects in the NWs. For larger voltages, we observed the space-charge limited current (SCLC) effect. The onset of the effect clearly correlates with the NW width. For narrow NWs the mature SCLC regime was achieved. This effect has great impact on fluctuation characteristics of studied NWs. At low voltages, we found that the normalized noise level increases with decreasing NW width. In the SCLC regime, a further increase in the normalized noise intensity (up to 1E4 times) was observed, as well as a change in the shape of the spectra with a tendency towards slope -3/2. We suggest that the features of the electric current and noise found in the NWs are of a general character and will have an impact on the development of NW-based devices.
The current-voltage characteristics of thin wires are often observed to be nonlinear, and this behavior has been ascribed to Schottky barriers at the contacts. We present electronic transport measurements on GaN nanorods and demonstrate that the nonl inear behavior originates instead from space-charge-limited current. A theory of space-charge-limited current in thin wires corroborates the experiments, and shows that poor screening in high aspect ratio materials leads to a dramatic enhancement of space-charge limited current, resulting in new scaling in terms of the aspect ratio.
Experimental observations have long-established that there exists a smooth roll-off or knee transition between the temperature-limited (TL) and full-space-charge-limited (FSCL) emission regions of the emission current density-temperature J-T (Miram) curve, or the emission current density-voltage J-V curve for a thermionic emission cathode. In this paper, we demonstrate that this experimentally observed smooth transition does not require frequently used a priori assumptions of a continuous distribution of work functions on the cathode surface. Instead, we find the smooth transition arises as a natural consequence of the physics of nonuniform thermionic emission from a spatially heterogeneous cathode surface. We obtain this smooth transition for both J-T and J-V curves using a predictive nonuniform thermionic emission model that includes 3-D space charge, patch fields (electrostatic potential nonuniformity on the cathode surface based on local work function values), and Schottky barrier lowering physics and illustrate that a smooth knee can arise from a thermionic cathode surface with as few as two discrete work function values. Importantly, we find that the inclusion of patch field effects is crucial for obtaining accurate J-T and J-V curves, and the further inclusion of Schottky barrier lowering is needed for accurate J-V curves. This finding, and the emission model provided in this paper have important implications for modeling electron emission from realistic, heterogeneous surfaces. Such modeling is important for improved understanding of the interplay of emission physics, cathode materials engineering, and design of numerous devices employing electron emission cathodes.
Frequency microcombs, successors to mode-locked laser and fiber combs, enable miniature rulers of light for applications including precision metrology, molecular fingerprinting, and exoplanet discoveries. To enable the frequency ruling function, micr ocombs must be stabilized by locking their carrier-envelop offset frequency. So far, the microcomb stabilization remains compounded by the elaborate optics external to the chip, thus evading its scaling benefit. To address this challenge, here we demonstrate a nanophotonic chip solution based on aluminum nitride thin films, which simultaneously offer optical Kerr nonlinearity for generating octave soliton combs and Pockels nonlinearity for enabling heterodyne detection of the offset frequency. The agile dispersion control of crystalline III-Nitride photonics permits high-fidelity generation of solitons with features including 1.5-octave comb span, dual dispersive waves, and sub-terahertz repetition rates down to 220 gigahertz. These attractive characteristics, aided by on-chip phase-matched aluminum nitride waveguides, allow the full determination of the offset frequency. Our proof-of-principle demonstration represents an important milestone towards fully-integrated self-locked microcombs for portable optical atomic clocks and frequency synthesizers.
The separation of hot carriers in semiconductors is of interest for applications such as thermovoltaic photodetection and third-generation photovoltaics. Semiconductor nanowires offer several potential advantages for effective hot-carrier separation such as: a high degree of control and flexibility in heterostructure-based band engineering, increased hot-carrier temperatures compared to bulk, and a geometry well suited for local control of light absorption. Indeed, InAs nanowires with a short InP energy barrier have been observed to produce electric power under global illumination, with an open-circuit voltage exceeding the Shockley-Queisser limit. To understand this behaviour in more detail, it is necessary to maintain control over the precise location of electron-hole pair-generation in the nanowire. In this work we perform electron-beam induced current measurements with high spatial resolution, and demonstrate the role of the InP barrier in extracting energetic electrons. We interprete the results in terms of hot-carrier separation, and extract estimates of the hot carrier mean free path.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا