ترغب بنشر مسار تعليمي؟ اضغط هنا

On the origin of electron accumulation layer at clean InAs(111) surfaces

121   0   0.0 ( 0 )
 نشر من قبل Dmitry Yudin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we provide a comprehensive theoretical analysis of the electronic structure of InAs(111) surfaces with a special attention paid to the energy region close to the fundamental bandgap. Starting from the bulk electronic structure of InAs as calculated using PBE functional with included Hubbard correction and spin-orbit coupling, we deliver proper values for the bandgap, split-off energy, as well as effective electron, light- and heavy-hole masses in full consistency with available experimental results. On the basis of optimized atomic surfaces we recover scanning tunneling microscopy images, which being supplied with accessible experimental data make it possible to speculate on the formation of electron accumulation layer for both As- and In-terminated InAs(111) surfaces. Moreover, these results are accompanied by band structure simulations of conduction band states.



قيم البحث

اقرأ أيضاً

We report an experimental and theoretical analysis of the root(3)xroot(3)-R30 and 2x2 reconstructions on the MgO (111) surface combining transmission electron microscopy, x-ray photoelectron spectroscopy, and reasonably accurate density functional ca lculations using the meta-GGA functional TPSS. The experimental data clearly shows that the surfaces contain significant coverages of hydroxyl terminations, even after UHV annealing, and as such cannot be the structures which have been previously reported. For the 2x2 surfaces a relatively simple structural framework is detailed which fits all the experimental and theoretical data. For the root(3)xroot(3) there turn out to be two plausible structures and neither the experimental nor theoretical results can differentiate between the two within error. However, by examining the conditions under which the surface is formed we describe a kinetic route for the transformation between the different reconstructions that involves mobile hydroxyl groups and protons, and relatively immobile cations, which strongly suggests only one of the two root(3)xroot(3) structures.
211 - Walter A. Harrison 2011
A uniform distribution of La and Sr in lanthanum-strontium manganites would lead to charged crystal planes, a charged surface, and arbitrarily large surface energy for a bulk crystal. This divergent energy can be eliminated by depleting the La concen tration near the surface. Assuming an exponential form for segregation suggested by experiment, the total electrostatic energy is calculated, depending only upon the decay length and on an effective charge Z* associated with the La ion. It is found to be lower in energy than neutralization of the surface by changing Mn charge states, previously expected, and lower than simply readjusting the La concentration in the surface plane. The actual decay length obtained by minimizing this electrostatic energy is shorter than that observed. The extension of this mechanism to segregation near the surface in other systems is discussed.
The growth of Bi films deposited on both A and B faces of InAs(111) has been investigated by low-energy electron diffraction, scanning tunneling microscopy, and photoelectron spectroscopy using synchrotron radiation. The changes upon Bi deposition of the In 4d and Bi 5d5/2 photoelectron signals allow to get a comprehensive picture of the Bi/InAs(1 1 1) interface. From the initial stages the Bi growth on the A face (In-terminated InAs) is epitaxial, contrary to that on the B face (As- terminated InAs) that proceeds via the formation of islands. Angle-resolved photoelectron spectra show that the electronic structure of a $approx 10$~BL deposit on the A face is identical to that of bulk Bi, while more than $approx 30$ BL are needed for the B face. Both bulk and surface states are well accounted for by fully relativistic ab initio spin-resolved photoemission calculations.
100 - L. De Santis , R. Resta 2000
We investigate some surfaces of a paradigmatic sp bonded metal--namely, Al(110), Al(100), and Al(111)--by means of the electron localization function (ELF), implemented in a first-principle pseudopotential framework. ELF is a ground-state property wh ich discriminates in a very sharp, quantitative, way between different kinds of bonding. ELF shows that in the bulk of Al the electron distribution is essentially jelliumlike, while what happens at the surface strongly depends on packing. At the least packed surface, Al(110), ELF indicates a free-atom nature of the electron distribution in the outer region. The most packed surface, Al(111), is instead at the opposite end, and can be regarded as a jellium surface weakly perturbed by the presence of the ionic cores.
We employ room-temperature ultrahigh vacuum scanning tunneling microscopy (UHV STM) and {em ab-initio} calculations to study graphene flakes that were adsorbed onto the Si(111)$-$7$times$7 surface. The characteristic 7$times$7 reconstruction of this semiconductor substrate can be resolved through graphene at all scanning biases, thus indicating that the atomistic configuration of the semiconducting substrate is not altered upon graphene adsorption. Large-scale {em ab-initio} calculations confirm these experimental observations and point to a lack of chemical bonding among interfacial graphene and silicon atoms. Our work provides insight into atomic-scale chemistry between graphene and highly-reactive surfaces, directing future passivation and chemical interaction work in graphene-based heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا