ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of Sr segregation at La1-xSrxMnO3 surfaces

212   0   0.0 ( 0 )
 نشر من قبل Walter Harrison
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A uniform distribution of La and Sr in lanthanum-strontium manganites would lead to charged crystal planes, a charged surface, and arbitrarily large surface energy for a bulk crystal. This divergent energy can be eliminated by depleting the La concentration near the surface. Assuming an exponential form for segregation suggested by experiment, the total electrostatic energy is calculated, depending only upon the decay length and on an effective charge Z* associated with the La ion. It is found to be lower in energy than neutralization of the surface by changing Mn charge states, previously expected, and lower than simply readjusting the La concentration in the surface plane. The actual decay length obtained by minimizing this electrostatic energy is shorter than that observed. The extension of this mechanism to segregation near the surface in other systems is discussed.



قيم البحث

اقرأ أيضاً

61 - T. Mizokawa , D. I. Khomskii , 1999
We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0 < x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At x=1/8, several charge and orbitally modulated states are found to be stable and almost degen erate in energy with a homogeneous ferromagnetic state. The present calculation indicates that a ferromagnetic state with a charge modulation along the c-axis which is consistent with the experiment by Yamada et al. might be responsible for the anomalous behavior around x = 1/8.
We report on the discovery of a novel triangular phase regime in the system La1-xSrxMnO3 by means of electron spin resonance and magnetic susceptibility measurements. This phase is characterized by the coexistence of ferromagnetic entities within the globally paramagnetic phase far above the magnetic ordering temperature. The nature of this phase can be understood in terms of Griffiths singularities arising due to the presence of correlated quenched disorder in the orthorhombic phase.
152 - Nan Yang , D. Di Castro , C. Aruta 2012
(CaCuO2)m/(La0.7Sr0.3MnO3)n superlattices, consisting of the infinite layers cuprate CaCuO2 and the optimally doped manganite La1-xSrxMnO3, were grown by pulsed laser deposition. The transport properties are dominated by the manganite block. X-Ray Ab sorption spectroscopy measurements show a clear evidence of an orbital reconstruction at the interface, ascribed to the hybridization between the Cu 3d3z2-r2 and the Mn 3d3z2-r2 orbitals via interface apical oxygen ions. Such a mechanism localizes holes at the interfaces, thus preventing charge transfer to the CaCuO2 block. Some charge (holes) transfer occurs toward the La0.7Sr0.3MnO3 block in strongly oxidized superlattices, contributing to the suppression of the magnetotransport properties.
We report on the pressure effects on the orbital polaron lattice in the lightly doped manganites $mathrm{La_{1-x}Sr_xMnO_{3}}$, with $xsim 1/8$. The dependence of the orbital polaron lattice on $negative$ chemical pressure is studied by substituting Pr for La in $mathrm{(La_{1-y}Pr_y)_{7/8}Sr_{1/8}MnO_{3}}$. In addition, we have studied its hydrostatic pressure dependence in $mathrm{(La_{0.9}Pr_{0.1})_{7/8}Sr_{1/8}MnO_{3}}$. Our results strongly indicate that the hopping $t$ significantly contributes to the stabilization of the orbital polaron lattice and that the orbital polarons are ferromagnetic objects which get stabilized by local double exchange processes. The analysis of short range orbital correlations and the verification of the Grueneisen scaling by hard x-ray, specific heat and thermal expansion data reinforces our conclusions.
83 - J. Geck , P. Wochner , S. Kiele 2005
By resonant x-ray scattering at the Mn K-edge on La7/8Sr1/8MnO3, we show that an orbital polaron lattice (OPL) develops at the metal-insulator transition of this compound. This orbital reordering explains consistently the unexpected coexistence of fe rromagnetic and insulating properties at low temperatures, the quadrupling of the lattice structure parallel to the MnO2-planes, and the observed polarization and azimuthal dependencies. The OPL is a clear manifestation of strong orbital-hole interactions, which play a crucial role for the colossal magnetoresistance effect and the doped manganites in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا