ﻻ يوجد ملخص باللغة العربية
Accurate real depth annotations are difficult to acquire, needing the use of special devices such as a LiDAR sensor. Self-supervised methods try to overcome this problem by processing video or stereo sequences, which may not always be available. Instead, in this paper, we propose a domain adaptation approach to train a monocular depth estimation model using a fully-annotated source dataset and a non-annotated target dataset. We bridge the domain gap by leveraging semantic predictions and low-level edge features to provide guidance for the target domain. We enforce consistency between the main model and a second model trained with semantic segmentation and edge maps, and introduce priors in the form of instance heights. Our approach is evaluated on standard domain adaptation benchmarks for monocular depth estimation and show consistent improvement upon the state-of-the-art.
In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar ob
Unsupervised domain adaptation (UDA) is important for applications where large scale annotation of representative data is challenging. For semantic segmentation in particular, it helps deploy on real target domain data models that are trained on anno
The advent of deep learning has brought an impressive advance to monocular depth estimation, e.g., supervised monocular depth estimation has been thoroughly investigated. However, the large amount of the RGB-to-depth dataset may not be always availab
Domain adaptation (DA) paves the way for label annotation and dataset bias issues by the knowledge transfer from a label-rich source domain to a related but unlabeled target domain. A mainstream of DA methods is to align the feature distributions of
Many existing approaches for unsupervised domain adaptation (UDA) focus on adapting under only data distribution shift and offer limited success under additional cross-domain label distribution shift. Recent work based on self-training using target p