ﻻ يوجد ملخص باللغة العربية
A search for $alpha$ decay of naturally occurring osmium isotopes to the lowest excited levels of daughter nuclei has been performed by using an ultra-low-background Broad-Energy Germanium $gamma$-detector with a volume of 112 cm$^3$ and an ultra-pure osmium sample with a mass of 118 g at the Gran Sasso National Laboratory of the INFN (Italy). The isotopic composition of the osmium sample has been measured with high precision using Negative Thermal Ionisation Mass Spectrometry. After 15851 h of data taking with the $gamma$-detector no effect has been detected, and lower limits on the $alpha$ decays were set at level of $lim T_{1/2}sim 10^{15}-10^{19}$ yr. The limits for the $alpha$ decays of $^{184}$Os and $^{186}$Os to the first excited levels of daughter nuclei, $T_{1/2}(^{184}$Os$)geq 6.8times10^{15}$ yr and $T_{1/2}(^{186}$Os$)geq3.3times10^{17}$ yr (at 90% C.L.), exceed the present theoretical estimates of the decays half-lives. For $^{189}$Os and $^{192}$Os also decays to the ground states of the daughter nuclei were searched for due to the instability of the daughter nuclides relative to $beta$ decay.
The first ever search for $alpha$ decays to the first excited state in Yb was performed for six isotopes of hafnium (174, 176, 177, 178, 179, 180) using a high purity Hf-sample of natural isotopic abundance with a mass of 179.8 g. For $^{179}$Hf, als
Negative results obtained in AMS searches by Dellinger et al. on mostly unrefined ores have led them to conclude that the very heavy long-lived species found in chemically processed samples with ICP-SFMS by Marinov et al. are artifacts. We argue that
We provide first evidence that under certain conditions, 1/2-spin fermions may naturally behave like a Grover search, looking for topological defects in a material. The theoretical framework is that of discrete-time quantum walks (QW), i.e. local uni
Evidence for the existence of long-lived neutron-deficient isotopes has been found in a study of naturally-occurring Th using iductively coupled plasma-sector field mass spectrometry. They are interpreted as belonging to the recently discovered class
Double-beta processes in $^{184}$Os and $^{192}$Os were searched for over 15851 h at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. by using a 118 g ultra-pure osmium sample installed on the endcap of a 112 cm$^3$ ultra-low-background broa