ﻻ يوجد ملخص باللغة العربية
We study the degree to which the coherence of quantum states is affected by noise. We give the definition of the $n$-th decay rate and investigate the coherence of Bell-diagonal states under $n$ iterations of channels. We derive explicit formulas of the $n$-th decay rates based on $l_1$ norm of coherence, relative entropy of coherence and skew information-based coherence. It is found that the larger $n$ is, the faster the $n$-th decay rate decreases as the parameter $p$ of Bell-diagonal states increases. Moreover, for any fixed $n$, with the increase of $p$, Bell-diagonal states can be completely incoherent under generalized amplitude damping (GAD) channels, depolarization (DEP) channels and phase flip (PF) channels, while this is not the case for bit flip (BF) channels and bit-phase flip (BPF) channels. We also investigate the geometry of the relative entropy of coherence and skew information-based coherence of Bell-diagonal states under different channels when the $n$-th decay rate is one, i.e., the coherence is frozen. It is shown that compared with BF and BPF channels, when $n$ is large enough, the coherence of Bell-diagonal states will not be frozen under GAD, DEP and PF channels. For skew information-based coherence, similar properties of coherence freezing are found.
Bounds of the minimum evolution time between two distinguishable states of a system can help to assess the maximal speed of quantum computers and communication channels. We study the quantum speed limit time of a composite quantum states in the prese
Two-qubit Bell-diagonal states can be depicted as a tetrahedron in three dimensions. We investigate the structure of quantum resources, including coherence and quantum discord, in the tetrahedron. The ordering of different resources measures is a com
We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection be
A decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic form of the coefficients of a given Bell diagonal states and can be derived via a s
We provide a simple class of 2-qudit states for which one is able to formulate necessary and sufficient conditions for separability. As a byproduct we generalize well known construction provided by Horodecki et al. for d=3. It is hoped that these sta