ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum speed limits for Bell-diagonal states

189   0   0.0 ( 0 )
 نشر من قبل Ying-Jie Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bounds of the minimum evolution time between two distinguishable states of a system can help to assess the maximal speed of quantum computers and communication channels. We study the quantum speed limit time of a composite quantum states in the presence of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exactly expressions of quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical to quantum decoherence.



قيم البحث

اقرأ أيضاً

We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection be tween the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal states that are not steerable by two projective measurements. Finally, we explore the steerability of Bell-diagonal states under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states that are not steerable by two projective measurements. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement, steering, and Bell nonlocality.
Two-qubit Bell-diagonal states can be depicted as a tetrahedron in three dimensions. We investigate the structure of quantum resources, including coherence and quantum discord, in the tetrahedron. The ordering of different resources measures is a com mon problem in resource theories, and which measure should be chosen to investigate the structure of resources is still an open question. We consider the structure of quantum resources which is not affected by the choice of measure. Our work provides a complete structure of coherence and quantum discord for Bell-diagonal states. The pictorial approach also indicates how to explore the structure of resources even when we dont have consistent measure of a concrete quantum resource.
We provide a simple class of 2-qudit states for which one is able to formulate necessary and sufficient conditions for separability. As a byproduct we generalize well known construction provided by Horodecki et al. for d=3. It is hoped that these sta tes with known separability/entanglement properties may be used to test various notions in entanglement theory.
A decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic form of the coefficients of a given Bell diagonal states and can be derived via a s imple algorithmic calculation of its invariants. In addition, the criterion can be extended to a quantum system of higher dimension.
For a bipartite entangled state shared by two observers, Alice and Bob, Alice can affect the post-measured states left to Bob by choosing different measurements on her half. Alice can convince Bob that she has such an ability if and only if the unnor malized postmeasured states cannot be described by a local-hidden-state (LHS) model. In this case, the state is termed steerable from Alice to Bob. By converting the problem to construct LHS models for two-qubit Bell diagonal states to the one for Werner states, we obtain the optimal models given by Jevtic textit{et al.} [J. Opt. Soc. Am. B 32, A40 (2015)], which are developed by using the steering ellipsoid formalism. Such conversion also enables us to derive a sufficient criterion for unsteerability of any two-qubit state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا