ﻻ يوجد ملخص باللغة العربية
When searching for exoplanets and ultimately considering their habitability, it is necessary to consider the planets composition, geophysical processes, and geochemical cycles in order to constrain the bioessential elements available to life. Determining the elemental ratios for exoplanetary ecosystems is not yet possible, but we generally assume that planets have compositions similar to those of their host stars. Therefore, using the Hypatia Catalog of high-resolution stellar abundances for nearby stars, we compare the C, N, Si, and P abundance ratios of main sequence stars with those in average marine plankton, Earths crust, as well as bulk silicate Earth and Mars. We find that, in general, plankton, Earth, and Mars are N-poor and P-rich compared with nearby stars. However, the dearth of P abundance data, which exists for only ~1% of all stars and 1% of exoplanet hosts, makes it difficult to deduce clear trends in the stellar data, let alone the role of P in the evolution of an exoplanet. Our Sun has relatively high P and Earth biology requires a small, but finite, amount of P. On rocky planets that form around host stars with substantially less P, the strong partitioning of P into the core could rule out the potential for surface P and, consequently, for life on that planets surface. Therefore, we urge the stellar abundance community to make P observations a priority in future studies and telescope designs.
Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic f
(abridged) We calculate near-infrared thermal emission spectra using a doubling-adding radiative transfer code, which includes scattering by clouds and haze. Initial temperature profiles and cloud optical depths are taken from the drift-phoenix brown
Stellar mass plays a central role in our understanding of star formation and aging. Stellar astronomy is largely based on two maps, both dependent on mass, either indirectly or directly: the Hertzprung-Russell Diagram (HRD) and the Mass-Luminosity Re
We analysed a selected sample of exoplanets with orbital periods close to 1 year to study the effects of the spectral window on the data, affected by the 1 cycle/year aliasing due to the Earth motion around the Sun. We pointed out a few cases where a
Given that the macromolecular building blocks of life were likely produced photochemically in the presence of ultraviolet (UV) light, we identify some general constraints on which stars produce sufficient UV for this photochemistry. We estimate how m