ﻻ يوجد ملخص باللغة العربية
Given that the macromolecular building blocks of life were likely produced photochemically in the presence of ultraviolet (UV) light, we identify some general constraints on which stars produce sufficient UV for this photochemistry. We estimate how much light is needed for the UV photochemistry by experimentally measuring the rate constant for the UV chemistry (`light chemistry, needed for prebiotic synthesis) versus the rate constants for the bimolecular reactions that happen in the absence of the UV light (`dark chemistry). We make these measurements for representative photochemical reactions involving SO$_3^{2-}$ and HS$^-$. By balancing the rates for the light and dark chemistry, we delineate the abiogenesis zones around stars of different stellar types based on whether their UV fluxes are sufficient for building up this macromolecular prebiotic inventory. We find that the SO$_3^{2-}$ light chemistry is rapid enough to build up the prebiotic inventory for stars hotter than K5 (4400 K). We show how the abiogenesis zone overlaps with the liquid water habitable zone. Stars cooler than K5 may also drive the formation of these building blocks if they are very active. The HS$^-$ light chemistry is too slow to work even for the Early Earth.
In the broadest sense, the primary goal of exoplanet demographic surveys is to determine the frequency and distribution of planets as a function of as many of the physical parameters that may influence planet formation and evolution as possible, over
When searching for exoplanets and ultimately considering their habitability, it is necessary to consider the planets composition, geophysical processes, and geochemical cycles in order to constrain the bioessential elements available to life. Determi
To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Ea
Oxygen and methane are considered to be the canonical biosignatures of modern Earth, and the simultaneous detection of these gases in a planetary atmosphere is an especially strong biosignature. However, these gases may be challenging to detect toget
Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic f