ﻻ يوجد ملخص باللغة العربية
Dynamic networks can be challenging to analyze visually, especially if they span a large time range during which new nodes and edges can appear and disappear. Although it is straightforward to provide interfaces for visualization that represent multiple states of the network (i.e., multiple timeslices) either simultaneously (e.g., through small multiples) or interactively (e.g., through interactive animation), these interfaces might not support tasks in which disjoint timeslices need to be compared. Since these tasks are key for understanding the dynamic aspects of the network, understanding which interactive visualizations best support these tasks is important. We present the results of a series of laboratory experiments comparing two traditional approaches (small multiples and interactive animation), with a more recent approach based on interactive timeslicing. The tasks were performed on a large display through a touch interface. Participants completed 24 trials of three tasks with all techniques. The results show that interactive timeslicing brings benefit when comparing distant points in time, but less benefits when analyzing contiguous intervals of time.
We present a system that allows users to visualize complex human motion via 3D motion sculptures---a representation that conveys the 3D structure swept by a human body as it moves through space. Given an input video, our system computes the motion sc
Graph data have become increasingly common. Visualizing them helps people better understand relations among entities. Unfortunately, existing graph visualization tools are primarily designed for single-person desktop use, offering limited support for
We present a comprehensive framework for evaluating line chart smoothing methods under a variety of visual analytics tasks. Line charts are commonly used to visualize a series of data samples. When the number of samples is large, or the data are nois
Cartograms are map-based data visualizations in which the area of each map region is proportional to an associated numeric data value (e.g., population or gross domestic product). A cartogram is called contiguous if it conforms to this area principle
It is fundamental for personal robots to reliably navigate to a specified goal. To study this task, PointGoal navigation has been introduced in simulated Embodied AI environments. Recent advances solve this PointGoal navigation task with near-perfect