ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting optical intensities and electric fields using a triple interferometer

54   0   0.0 ( 0 )
 نشر من قبل David Collins
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the issue of validating the relationship between electric fields and optical intensity as proposed by the classical theory of electromagnetism. We describe an interference scenario in which this can be checked using only intensity measurements and without any other information regarding the details of the arrangement of the associated fields. We implement this experimentally using a triple Michelson interferometer and the results strongly suggest that the method validates the classical relationship between optical intensity and the associated classical field.



قيم البحث

اقرأ أيضاً

We propose a new scalable architecture for trapped ion quantum computing that combines optical tweezers delivering qubit state-dependent local potentials with oscillating electric fields. Since the electric field allows for long-range qubit-qubit int eractions mediated by the center-of-mass motion of the ion crystal alone, it is inherently scalable to large ion crystals. Furthermore, our proposed scheme does not rely on either ground state cooling or the Lamb-Dicke approximation. We study the effects of imperfect cooling of the ion crystal, as well as the role of unwanted qubit-motion entanglement, and discuss the prospects of implementing the state-dependent tweezers in the laboratory.
We propose a simple experiment to explore magnetic fields created by electric railways and compare them with a simple model and parameters estimated using easily available information. A pedestrian walking on an overpass above train tracks registers the components of the magnetic field with the built-in magnetometer of a smartphone. The experimental results are successfully compared with a model of the magnetic field of the transmission lines and the local Earths magnetic field. This experiment, suitable for a field trip, involves several abilities, such as modeling the magnetic field of power lines, looking up reliable information and estimating non-easily accessible quantities.
Mobile quantum impurities interacting with a fermionic bath form quasiparticles known as Fermi polarons. We demonstrate that a force applied to the bath particles can generate a drag force of similar magnitude acting on the impurities, realizing a no vel, nonperturbative Coulomb drag effect. To prove this, we calculate the fully self-consistent, frequency-dependent transconductivity at zero temperature in the Baym-Kadanoff conserving approximation. We apply our theory to excitons and exciton polaritons interacting with a bath of charge carriers in a doped semiconductor embedded in a microcavity. In external electric and magnetic fields, the drag effect enables electrical control of excitons and may pave the way for the implementation of gauge fields for excitons and polaritons. Moreover, a reciprocal effect may facilitate optical manipulation of electron transport. Our findings establish transport measurements as a novel, powerful tool for probing the many-body physics of mobile quantum impurities.
Optical cloaking consists in hiding from sight an object by properly deviating the light that comes from it. An optical cloaking device (OCD) is an artifact that hides the object and, at the same time, its presence is not (or should not be) noticeabl e for the observer, who will have the impression of being looking through it. At the level of paraxial geometrical optics, suitable for undergraduate courses, simple OCDs can be built by combining a series of lenses. With this motivation, here we present an analysis of a simple projective OCD arrangement. First, a simple theoretical account in terms of the transfer matrix method is provided, and then the outcomes from a series of teaching experiments carried out with this device, easy to conduct in the classroom, are discussed. In particular, the performance of such an OCD is investigated by determining the effect of the hidden object, role here played by the opaque zone of an iris-type diaphragm, on the projected image of an illuminated transparent slide (test object). That is, cloaking is analyzed in terms of the optimal position and opening diameter of a diaphragm that still warrants an almost unaffected projected image. Because the lenses are not high-quality ones, the OCD is not aberration-free, which is advantageously considered to determine acceptable cloaking conditions (i.e., the tolerance of the device).
Optical properties of graphene are explored by using the generalized tight-binding model. The main features of spectral structures, the form, frequency, number and intensity, are greatly enriched by the complex relationship among the interlayer atomi c interactions, the magnetic quantization and the Coulomb potential energy. Absorption spectra have the shoulders, asymmetric peaks and logarithmic peaks, coming from the band-edge states of parabolic dispersions, the constant-energy loops and the saddle points, respectively. The initial forbidden excitation region is only revealed in even-layer AA stacking systems. Optical gaps and special structures can be generated by an electric field. The delta-function-like structures in magneto-optical spectra, which present the single, twin and double peaks, are associated with the symmetric, asymmetric and splitting Landau-level energy spectra, respectively. The single peaks due to the non-tilted Dirac cones exhibit the nearly uniform intensity. The AAB stacking possesses more absorption structures, compared to the other stackings. The diverse magneto-optical selection rules are mainly determined by the well-behaved, perturbed and undefined Landau modes. The frequent anti-crossings in the magnetic- and electric-field-dependent energy spectra lead to the increase of absorption peaks and the reduced intensities. Part of theoretical calculations are consistent with the experimental measurements, and the others need further detailed examinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا