ﻻ يوجد ملخص باللغة العربية
A recent spate of state-of-the-art semi- and un-supervised solutions disentangle and encode image content into a spatial tensor and image appearance or style into a vector, to achieve good performance in spatially equivariant tasks (e.g. image-to-image translation). To achieve this, they employ different model design, learning objective, and data biases. While considerable effort has been made to measure disentanglement in vector representations, and assess its impact on task performance, such analysis for (spatial) content - style disentanglement is lacking. In this paper, we conduct an empirical study to investigate the role of different biases in content-style disentanglement settings and unveil the relationship between the degree of disentanglement and task performance. In particular, we consider the setting where we: (i) identify key design choices and learning constraints for three popular content-style disentanglement models; (ii) relax or remove such constraints in an ablation fashion; and (iii) use two metrics to measure the degree of disentanglement and assess its effect on each task performance. Our experiments reveal that there is a sweet spot between disentanglement, task performance and - surprisingly - content interpretability, suggesting that blindly forcing for higher disentanglement can hurt model performance and content factors semanticness. Our findings, as well as the used task-independent metrics, can be used to guide the design and selection of new models for tasks where content-style representations are useful.
Content and style (C-S) disentanglement intends to decompose the underlying explanatory factors of objects into two independent subspaces. From the unsupervised disentanglement perspective, we rethink content and style and propose a formulation for u
One of the important research topics in image generative models is to disentangle the spatial contents and styles for their separate control. Although StyleGAN can generate content feature vectors from random noises, the resulting spatial content con
The key procedure of haze image translation through adversarial training lies in the disentanglement between the feature only involved in haze synthesis, i.e.style feature, and the feature representing the invariant semantic content, i.e. content fea
Recently, image-to-image translation has made significant progress in achieving both multi-label (ie, translation conditioned on different labels) and multi-style (ie, generation with diverse styles) tasks. However, due to the unexplored independence
Style transfer is to render given image contents in given styles, and it has an important role in both computer vision fundamental research and industrial applications. Following the success of deep learning based approaches, this problem has been re