ﻻ يوجد ملخص باللغة العربية
Style transfer is to render given image contents in given styles, and it has an important role in both computer vision fundamental research and industrial applications. Following the success of deep learning based approaches, this problem has been re-launched recently, but still remains a difficult task because of trade-off between preserving contents and faithful rendering of styles. Indeed, how well-balanced content and style are is crucial in evaluating the quality of stylized images. In this paper, we propose an end-to-end two-stream Fully Convolutional Networks (FCNs) aiming at balancing the contributions of the content and the style in rendered images. Our proposed network consists of the encoder and decoder parts. The encoder part utilizes a FCN for content and a FCN for style where the two FCNs have feature injections and are independently trained to preserve the semantic content and to learn the faithful style representation in each. The semantic content feature and the style representation feature are then concatenated adaptively and fed into the decoder to generate style-transferred (stylized) images. In order to train our proposed network, we employ a loss network, the pre-trained VGG-16, to compute content loss and style loss, both of which are efficiently used for the feature injection as well as the feature concatenation. Our intensive experiments show that our proposed model generates more balanced stylized images in content and style than state-of-the-art methods. Moreover, our proposed network achieves efficiency in speed.
This paper presents a content-aware style transfer algorithm for paintings and photos of similar content using pre-trained neural network, obtaining better results than the previous work. In addition, the numerical experiments show that the style pat
Recently, style transfer has received a lot of attention. While much of this research has aimed at speeding up processing, the approaches are still lacking from a principled, art historical standpoint: a style is more than just a single image or an a
Style transfer has recently received a lot of attention, since it allows to study fundamental challenges in image understanding and synthesis. Recent work has significantly improved the representation of color and texture and computational speed and
Universal Neural Style Transfer (NST) methods are capable of performing style transfer of arbitrary styles in a style-agnostic manner via feature transforms in (almost) real-time. Even though their unimodal parametric style modeling approach has been
Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on an arbitrary style image. In this task the content-style feature transformation is a critical component for a proper fusion of features. Existin