ﻻ يوجد ملخص باللغة العربية
In [14], the authors developed a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In this paper, we extend this approach to incorporate high order approximation methods. We again rely on the fact that we can associate to the IFS a parametrized family of positive, linear, Perron-Frobenius operators $L_s$, an idea known in varying degrees of generality for many years. Although $L_s$ is not compact in the setting we consider, it possesses a strictly positive $C^m$ eigenfunction $v_s$ with eigenvalue $R(L_s)$ for arbitrary $m$ and all other points $z$ in the spectrum of $L_s$ satisfy $|z| le b$ for some constant $b < R(L_s)$. Under appropriate assumptions on the IFS, the Hausdorff dimension of the invariant set of the IFS is the value $s=s_*$ for which $R(L_s) =1$. This eigenvalue problem is then approximated by a collocation method at the extended Chebyshev points of each subinterval using continuous piecewise polynomials of arbitrary degree $r$. Using an extension of the Perron theory of positive matrices to matrices that map a cone $K$ to its interior and explicit a priori bounds on the derivatives of the strictly positive eigenfunction $v_s$, we give rigorous upper and lower bounds for the Hausdorff dimension $s_*$, and these bounds converge rapidly to $s_*$ as the mesh size decreases and/or the polynomial degree increases.
We develop a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In the one dimensional case, our methods require only C^3 regularity of the maps in the IFS. The key idea, which has b
We develop a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In the one dimensional case that we consider here, our methods require only $C^3$ regularity of the maps in the IFS. T
In a previous paper, dealing with Applications in $mathbb{R}^1$, the authors developed a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS and studied some applications in one dimens
In this paper we prove the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponent $mu$ $in$ (1/2, 1) is 2(1 -- $mu$) when $mu$ $ge$ $sqrt$ 2/2, whereas for $mu$ textless{} $sqrt$ 2/2 it is greater tha
We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension. Let a be any real number greater than or equal to 2 and let b be any non-negative real less than or equal to 2/a. We