ﻻ يوجد ملخص باللغة العربية
We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension. Let a be any real number greater than or equal to 2 and let b be any non-negative real less than or equal to 2/a. We show that there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its uniform measure, almost all real numbers have irrationality exponent equal to a. We give an analogous result relating the irrationality exponent and the effective Hausdorff dimension of individual real numbers. We prove that there is a Cantor-like set such that, with respect to its uniform measure, almost all elements in the set have effective Hausdorff dimension equal to b and irrationality exponent equal to a. In each case, we obtain the desired set as a distinguished path in a tree of Cantor sets.
In this paper we prove the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponent $mu$ $in$ (1/2, 1) is 2(1 -- $mu$) when $mu$ $ge$ $sqrt$ 2/2, whereas for $mu$ textless{} $sqrt$ 2/2 it is greater tha
We obtain the exact value of the Hausdorff dimension of the set of coefficients of Gauss sums which for a given $alpha in (1/2,1)$ achieve the order at least $N^{alpha}$ for infinitely many sum lengths $N$. For Weyl sums with polynomials of degree $d
This paper has been withdrawn Any real number $x$ in the unit interval can be expressed as a continued fraction $x=[n_1,...,n_{_N},...]$. Subsets of zero measure are obtained by imposing simple conditions on the $n_{_N}$. By imposing $n_{_N}le m fo
We show that the set of real numbers of Lagrange value 3 has Hausdorff dimension zero by showing the appropriate generalization for each element of the Teichmueller space of the appropriate subgroup of the classical modular group.
In [14], the authors developed a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In this paper, we extend this approach to incorporate high order approximation methods. We again r