ﻻ يوجد ملخص باللغة العربية
This review paper provides an introduction of Markov chains and their convergence rates which is an important and interesting mathematical topic which also has important applications for very widely used Markov chain Monte Carlo (MCMC) algorithm. We first discuss eigenvalue analysis for Markov chains on finite state spaces. Then, using the coupling construction, we prove two quantitative bounds based on minorization condition and drift conditions, and provide descriptive and intuitive examples to showcase how these theorems can be implemented in practice. This paper is meant to provide a general overview of the subject and spark interest in new Markov chain research areas.
We give qualitative and quantitative improvements to theorems which enable significance testing in Markov Chains, with a particular eye toward the goal of enabling strong, interpretable, and statistically rigorous claims of political gerrymandering.
We consider the connections among `clumped residual allocation models (RAMs), a general class of stick-breaking processes including Dirichlet processes, and the occupation laws of certain discrete space time-inhomogeneous Markov chains related to sim
We establish a quantitative version of the Tracy--Widom law for the largest eigenvalue of high dimensional sample covariance matrices. To be precise, we show that the fluctuations of the largest eigenvalue of a sample covariance matrix $X^*X$ converg
We study the rate of convergence of the Mallows distance between the empirical distribution of a sample and the underlying population. The surprising feature of our results is that the convergence rate is slower in the discrete case than in the absol
We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms a