ﻻ يوجد ملخص باللغة العربية
We study the rate of convergence of the Mallows distance between the empirical distribution of a sample and the underlying population. The surprising feature of our results is that the convergence rate is slower in the discrete case than in the absolutely continuous setting. We show how the hazard function plays a significant role in these calculations. As an application, we recall that the quantity studied provides an upper bound on the distance between the bootstrap distribution of a sample mean and its true sampling distribution. Moreover, the convenient properties of the Mallows metric yield a straightforward lower bound, and therefore a relatively precise description of the asymptotic performance of the bootstrap in this problem.
We give a new proof of the classical Central Limit Theorem, in the Mallows ($L^r$-Wasserstein) distance. Our proof is elementary in the sense that it does not require complex analysis, but rather makes use of a simple subadditive inequality related t
This paper has been temporarily withdrawn, pending a revised version taking into account similarities between this paper and the recent work of del Barrio, Gine and Utzet (Bernoulli, 11 (1), 2005, 131-189).
We prove the asymptotic independence of the empirical process $alpha_n = sqrt{n}( F_n - F)$ and the rescaled empirical distribution function $beta_n = n (F_n(tau+frac{cdot}{n})-F_n(tau))$, where $F$ is an arbitrary cdf, differentiable at some point $
We consider a sequence of identically independently distributed random samples from an absolutely continuous probability measure in one dimension with unbounded density. We establish a new rate of convergence of the $infty-$Wasserstein distance betwe
Consider the empirical measure, $hat{mathbb{P}}_N$, associated to $N$ i.i.d. samples of a given probability distribution $mathbb{P}$ on the unit interval. For fixed $mathbb{P}$ the Wasserstein distance between $hat{mathbb{P}}_N$ and $mathbb{P}$ is a