ترغب بنشر مسار تعليمي؟ اضغط هنا

Security of Alerting Authorities in the WWW: Measuring Namespaces, DNSSEC, and Web PKI

63   0   0.0 ( 0 )
 نشر من قبل Pouyan Fotouhi Tehrani
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

During disasters, crisis, and emergencies the public relies on online services provided by official authorities to receive timely alerts, trustworthy information, and access to relief programs. It is therefore crucial for the authorities to reduce risks when accessing their online services. This includes catering to secure identification of service, secure resolution of name to network service, and content security and privacy as a minimum base for trustworthy communication. In this paper, we take a first look at Alerting Authorities (AA) in the US and investigate security measures related to trustworthy and secure communication. We study the domain namespace structure, DNSSEC penetration, and web certificates. We introduce an integrative threat model to better understand whether and how the online presence and services of AAs are harmed. As an illustrative example, we investigate 1,388 Alerting Authorities. We observe partial heightened security relative to the global Internet trends, yet find cause for concern as about 78% of service providers fail to deploy measures of trustworthy service provision. Our analysis shows two major shortcomings. First, how the DNS ecosystem is leveraged: about 50% of organizations do not own their dedicated domain names and are dependent on others, 55% opt for unrestricted-use namespaces, which simplifies phishing, and less than 4% of unique AA domain names are secured by DNSSEC, which can lead to DNS poisoning and possibly to certificate misissuance. Second, how Web PKI certificates are utilized: 15% of all hosts provide none or invalid certificates, thus cannot cater to confidentiality and data integrity, 64% of the hosts provide domain validation certification that lack any identity information, and shared certificates have gained on popularity, which leads to fate-sharing and can be a cause for instability.



قيم البحث

اقرأ أيضاً

WhatsApp messenger is arguably the most popular mobile app available on all smart-phones. Over one billion people worldwide for free messaging, calling, and media sharing use it. In April 2016, WhatsApp switched to a default end-to-end encrypted serv ice. This means that all messages (SMS), phone calls, videos, audios, and any other form of information exchanged cannot be read by any unauthorized entity since WhatsApp. In this paper we analyze the WhatsApp messaging platform and critique its security architecture along with a focus on its privacy preservation mechanisms. We report that the Signal Protocol, which forms the basis of WhatsApp end-to-end encryption, does offer protection against forward secrecy, and MITM to a large extent. Finally, we argue that simply encrypting the end-to-end channel cannot preserve privacy. The metadata can reveal just enough information to show connections between people, their patterns, and personal information. This paper elaborates on the security architecture of WhatsApp and performs an analysis on the various protocols used. This enlightens us on the status quo of the app security and what further measures can be used to fill existing gaps without compromising the usability. We start by describing the following (i) important concepts that need to be understood to properly understand security, (ii) the security architecture, (iii) security evaluation, (iv) followed by a summary of our work. Some of the important concepts that we cover in this paper before evaluating the architecture are - end-to-end encryption (E2EE), signal protocol, and curve25519. The description of the security architecture covers key management, end-to-end encryption in WhatsApp, Authentication Mechanism, Message Exchange, and finally the security evaluation. We then cover importance of metadata and role it plays in conserving privacy with respect to whatsapp.
This paper embodies the usage of Big Data in Healthcare. It is important to note that big data in terms of Architecture and implementation might be or has already or will continue to assist the continuous growth in the field of healthcare. The main i mportant aspects of this study are the general importance of big data in healthcare, the positives big data will help tackle and enhance in this field and not to also forget to mention the tremendous downside big data has on healthcare that is still needed to improve or putting extensive research on. We believe there is still a long way in which institutions and individuals understand the hidden truth about big data. We have highlighted the various ways one could be confidently relied on big data and on the other hand highlighted the weighted importance of big problem big data and expected solutions.
To address the increasing security demands of industrial deployments, OPC UA is one of the first industrial protocols explicitly designed with security in mind. However, deploying it securely requires a thorough configuration of a wide range of optio ns. Thus, assessing the security of OPC UA deployments and their configuration is necessary to ensure secure operation, most importantly confidentiality and integrity of industrial processes. In this work, we present extensions to the popular Metasploit Framework to ease network-based security assessments of OPC UA deployments. To this end, we discuss methods to discover OPC UA servers, test their authentication, obtain their configuration, and check for vulnerabilities. Ultimately, our work enables operators to verify the (security) configuration of their systems and identify potential attack vectors.
The rapid growth of online advertising has fueled the growth of ad-blocking software, such as new ad-blocking and privacy-oriented browsers or browser extensions. In response, both ad publishers and ad networks are constantly trying to pursue new str ategies to keep up their revenues. To this end, ad networks have started to leverage the Web Push technology enabled by modern web browsers. As web push notifications (WPNs) are relatively new, their role in ad delivery has not been yet studied in depth. Furthermore, it is unclear to what extent WPN ads are being abused for malvertising (i.e., to deliver malicious ads). In this paper, we aim to fill this gap. Specifically, we propose a system called PushAdMiner that is dedicated to (1) automatically registering for and collecting a large number of web-based push notifications from publisher websites, (2) finding WPN-based ads among these notifications, and (3) discovering malicious WPN-based ad campaigns. Using PushAdMiner, we collected and analyzed 21,541 WPN messages by visiting thousands of different websites. Among these, our system identified 572 WPN ad campaigns, for a total of 5,143 WPN-based ads that were pushed by a variety of ad networks. Furthermore, we found that 51% of all WPN ads we collected are malicious, and that traditional ad-blockers and malicious URL filters are remarkably ineffective against WPN-based malicious ads, leaving a significant abuse vector unchecked.
Modern web applications often rely on third-party services to provide their functionality to users. The secure integration of these services is a non-trivial task, as shown by the large number of attacks against Single Sign On and Cashier-as-a-Servic e protocols. In this paper we present Bulwark, a new automatic tool which generates formally verified security monitors from applied pi-calculus specifications of web protocols. The security monitors generated by Bulwark offer holistic protection, since they can be readily deployed both at the client side and at the server side, thus ensuring full visibility of the attack surface against web protocols. We evaluate the effectiveness of Bulwark by testing it against a pool of vulnerable web applications that use the OAuth 2.0 protocol or integrate the PayPal payment system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا