ﻻ يوجد ملخص باللغة العربية
WhatsApp messenger is arguably the most popular mobile app available on all smart-phones. Over one billion people worldwide for free messaging, calling, and media sharing use it. In April 2016, WhatsApp switched to a default end-to-end encrypted service. This means that all messages (SMS), phone calls, videos, audios, and any other form of information exchanged cannot be read by any unauthorized entity since WhatsApp. In this paper we analyze the WhatsApp messaging platform and critique its security architecture along with a focus on its privacy preservation mechanisms. We report that the Signal Protocol, which forms the basis of WhatsApp end-to-end encryption, does offer protection against forward secrecy, and MITM to a large extent. Finally, we argue that simply encrypting the end-to-end channel cannot preserve privacy. The metadata can reveal just enough information to show connections between people, their patterns, and personal information. This paper elaborates on the security architecture of WhatsApp and performs an analysis on the various protocols used. This enlightens us on the status quo of the app security and what further measures can be used to fill existing gaps without compromising the usability. We start by describing the following (i) important concepts that need to be understood to properly understand security, (ii) the security architecture, (iii) security evaluation, (iv) followed by a summary of our work. Some of the important concepts that we cover in this paper before evaluating the architecture are - end-to-end encryption (E2EE), signal protocol, and curve25519. The description of the security architecture covers key management, end-to-end encryption in WhatsApp, Authentication Mechanism, Message Exchange, and finally the security evaluation. We then cover importance of metadata and role it plays in conserving privacy with respect to whatsapp.
Standardization and harmonization efforts have reached a consensus towards using a special-purpose Vehicular Public-Key Infrastructure (VPKI) in upcoming Vehicular Communication (VC) systems. However, there are still several technical challenges with
Traffic inspection is a fundamental building block of many security solutions today. For example, to prevent the leakage or exfiltration of confidential insider information, as well as to block malicious traffic from entering the network, most enterp
The roles of trust, security and privacy are somewhat interconnected, but different facets of next generation networks. The challenges in creating a trustworthy 6G are multidisciplinary spanning technology, regulation, techno-economics, politics and
Sixth-generation (6G) mobile networks will have to cope with diverse threats on a space-air-ground integrated network environment, novel technologies, and an accessible user information explosion. However, for now, security and privacy issues for 6G
Activity-tracking applications and location-based services using short-range communication (SRC) techniques have been abruptly demanded in the COVID-19 pandemic, especially for automated contact tracing. The attention from both public and policy keep