ﻻ يوجد ملخص باللغة العربية
High-harmonic generation is one of the most fundamental processes in strong laser-field physics that has led to countless achievements in atomic physics and beyond. However, a rigorous quantum electrodynamical picture of the process has never been reported. Here, we prove rigorously and demonstrate experimentally that the quantum state of the driving laser field, as well as that of harmonics, is coherent. Projecting this state on its part corresponding to harmonic generation, it becomes a superposition of a state, amplitude-shifted due to the quantum nature of light, and the initial state of the laser. This superposition interpolates between a Schr{o}dinger kitten, and a genuine Schr{o}dinger cat state. This work opens new paths for ground-breaking investigations in strong laser-field physics and quantum technology. We dedicate the work to the memory of Roy J. Glauber, the inventor of coherent states.
The nonlinear frequency conversion of low-temporal-coherent light holds a variety of applications and has attracted considerable interest. However, its physical mechanism remains relatively unexplored, and the conversion efficiency and bandwidth are
High-order harmonic generation (HHG) in isolated atoms and molecules has been widely utilized in extreme ultraviolet (XUV) photonics and attosecond pulse metrology. Recently, HHG has also been observed in solids, which could lead to important applica
We demonstrate second harmonic generation of blue light on an integrated thin-film lithium niobate waveguide and observe a conversion efficiency of $eta_0= 33000%/text{W-cm}^2$, significantly exceeding previous demonstrations.
Optical waveguides made from periodically poled materials provide high confinement of light and enable the generation of new wavelengths via quasi-phase-matching, making them a key platform for nonlinear optics and photonics. However, such devices ar
High-harmonic generation is the cornerstone of nonlinear optics. It has been demonstrated in a wide range of crystalline systems including dielectrics, semiconductors, and semi-metals, as well as in gases, leaving metals out due to their low damage t