ﻻ يوجد ملخص باللغة العربية
Tidal Disruption Events (TDEs) are characterized by the emission of a short burst of high-energy radiation. We analyze the cumulative impact of TDEs on galactic habitability using the Milky Way as a proxy. We show that X-rays and extreme ultraviolet (XUV) radiation emitted during TDEs can cause hydrodynamic escape and instigate biological damage. By taking the appropriate variables into consideration, such as the efficiency of atmospheric escape and distance from the Galactic center, we demonstrate that the impact of TDEs on galactic habitability is comparable to that of Active Galactic Nuclei. In particular, we show that planets within distances of $sim 0.1$-$1$ kpc could lose Earth-like atmospheres over the age of the Earth, and that some of them might be subject to biological damage once every $gtrsim 10^4$ yrs. We conclude by highlighting potential ramifications of TDEs and argue that they should be factored into future analyses of inner galactic habitability.
Recent studies of Tidal Disruption Events (TDEs) have revealed unexpected correlations between the TDE rate and the large-scale properties of the host galaxies. In this review, we present the host galaxy properties of all TDE candidates known to date
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
A starburst induced by a galaxy merger may create a relatively thin central stellar disk at radius $le 100$pc. We calculate the rate of tidal disruption events (TDEs) by the inspiraling secondary supermassive black (SMBH) through the disk. With a sma
Recent claimed detections of tidal disruption events (TDEs) in multi-wavelength data have opened potential new windows into the evolution and properties of otherwise dormant supermassive black holes (SMBHs) in the centres of galaxies. At present, the
We study the rates of tidal disruption of stars by intermediate-mass to supermassive black holes on bound to unbound orbits by using high-accuracy direct N-body experiments. The approaching stars from the star cluster to the black hole can take three