ﻻ يوجد ملخص باللغة العربية
We study the rates of tidal disruption of stars by intermediate-mass to supermassive black holes on bound to unbound orbits by using high-accuracy direct N-body experiments. The approaching stars from the star cluster to the black hole can take three types of orbit: eccentric, parabolic, and hyperbolic orbits. Since the mass fallback rate shows a different variability depending on these orbital types, we can classify tidal disruption events (TDEs) into three main categories: eccentric, parabolic, and hyperbolic TDEs. Respective TDEs are characterized by two critical values of the orbital eccentricity: the lower critical eccentricity is the one below which the stars on eccentric orbits cause the finite, intense accretion, and the higher critical eccentricity above which the stars on hyperbolic orbits cause no accretion. Moreover, we find that the parabolic TDEs are divided into three subclasses: precisely parabolic, marginally eccentric, and marginally hyperbolic TDEs. We analytically derive that the mass fallback rate of the marginally eccentric TDEs can be flatter and slightly higher than the standard fallback rate proportional to $t^{-5/3}$, whereas it can be flatter and lower for the marginally hyperbolic TDEs. We confirm by N-body experiments that only few eccentric, precisely parabolic, and hyperbolic TDEs can occur in a spherical stellar system with a single intermediate-mass to supermassive black hole. A substantial fraction of the stars approaching to the black hole would cause the marginally eccentric or marginally hyperbolic TDEs.
Tidal disruption events occur rarely in any individual galaxy. Over the last decade, however, time-domain surveys have begun to accumulate statistical samples of these flares. What dynamical processes are responsible for feeding stars to supermassive
Accretion onto black holes is an efficient mechanism in converting the gas mass-energy into energetic outputs as radiation, wind and jet. Tidal disruption events, in which stars are tidally torn apart and then accreted onto supermassive black holes,
We propose a model to explain the time delay between the peak of the optical and X-ray luminosity, dt hereafter, in UV/optically-selected tidal disruption events (TDEs). The following picture explains the observed dt in several TDEs as a consequence
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
Radio observations of tidal disruption events (TDEs) probe material ejected by the disruption of stars by supermassive black holes (SMBHs), uniquely tracing the formation and evolution of jets and outflows, revealing details of the disruption hydrody