ﻻ يوجد ملخص باللغة العربية
Large intelligent surfaces (LIS) present a promising new technology for enhancing the performance of wireless communication systems. Realizing the gains of LIS requires accurate channel knowledge, and in practice the channel estimation overhead can be large due to the passive nature of LIS. Here, we study the achievable rate of a LIS-assisted single-input single-output communication system, accounting for the pilot overhead of a least-squares channel estimator. We demonstrate that there exists an optimal $K^{*}$, which maximizes achievable rate by balancing the power gains offered by LIS and the channel estimation overhead. We present analytical approximations for $K^{*}$, based on maximizing an analytical upper bound on average achievable rate that we derive, and study the dependencies of $K^*$ on statistical channel and system parameters.
In this paper, we investigate the average achievable data rate (AADR) of the control information delivery from the ground control station (GCS) to unmanned-aerial-vehicle (UAV) under a 3-D channel, which requires ultra-reliable and low-latency commun
An intelligent reflecting surface (IRS) at terahertz (THz) bands is expected to have a massive number of reflecting elements to compensate for the severe propagation losses. However, as the IRS size grows, the conventional far-field assumption starts
This paper proposes a practical method for the definition of multiple communication modes when antennas operate in the near-field region, by realizing ad-hoc beams exploiting the focusing capability of large antennas. The beamspace modeling proposed
We consider multi-antenna wireless systems aided by large intelligent surfaces (LIS). LIS presents a new physical layer technology for improving coverage and energy efficiency by intelligently controlling the propagation environment. In practice howe
Intelligent reflecting surface (IRS), which consists of a large number of tunable reflective elements, is capable of enhancing the wireless propagation environment in a cellular network by intelligently reflecting the electromagnetic waves from the b