ترغب بنشر مسار تعليمي؟ اضغط هنا

Channel Estimation for Large Intelligent Surface Aided MISO Communications: From LMMSE to Deep Learning Solutions

62   0   0.0 ( 0 )
 نشر من قبل Neel Kanth Kundu
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider multi-antenna wireless systems aided by large intelligent surfaces (LIS). LIS presents a new physical layer technology for improving coverage and energy efficiency by intelligently controlling the propagation environment. In practice however, achieving the anticipated gains of LIS requires accurate channel estimation. Recent attempts to solve this problem have considered the least-squares (LS) approach, which is simple but also sub-optimal. The optimal channel estimator, based on the minimum mean-squared-error (MMSE) criterion, is challenging to obtain and is non-linear due to the non-Gaussianity of the effective channel seen at the receiver. Here we present approaches to approximate the optimal MMSE channel estimator. As a first approach, we analytically develop the best linear estimator, the LMMSE, together with a corresponding majorization-minimization based algorithm designed to optimize the LIS phase shift matrix during the training phase. This estimator is shown to yield improved accuracy over the LS approach by exploiting second-order statistical properties of the wireless channel and the noise. To further improve performance and better approximate the globally-optimal MMSE channel estimator, we propose data-driven non-linear solutions based on deep learning. Specifically, by posing the MMSE channel estimation problem as an image denoising problem, we propose two convolutional neural network (CNN) based methods to perform the denoising and approximate the optimal MMSE channel estimation solution. Our numerical results show that these CNN-based estimators give superior performance compared with linear estimation approaches. They also have low computational complexity requirements, thereby motivating their potential use in future LIS-aided wireless communication systems.



قيم البحث

اقرأ أيضاً

This paper investigates the uplink cascaded channel estimation for intelligent-reflecting-surface (IRS)-assisted multi-user multiple-input-single-output systems. We focus on a sub-6 GHz scenario where the channel propagation is not sparse and the num ber of IRS elements can be larger than the number of BS antennas. A novel channel estimation protocol without the need of on-off amplitude control to avoid the reflection power loss is proposed. In addition, the pilot overhead is substantially reduced by exploiting the common-link structure to decompose the cascaded channel coefficients by the multiplication of the common-link variables and the user-specific variables. However, these two types of variables are highly coupled, which makes them difficult to estimate. To address this issue, we formulate an optimization-based joint channel estimation problem, which only utilizes the covariance of the cascaded channel. Then, we design a low-complexity alternating optimization algorithm with efficient initialization for the non-convex optimization problem, which achieves a local optimum solution. To further enhance the estimation accuracy, we propose a new formulation to optimize the training phase shifting configuration for the proposed protocol, and then solve it using the successive convex approximation algorithm. Comprehensive simulations verify that the proposed algorithm has supreme performance compared to various state-of-the-art baseline schemes.
112 - Gui Zhou , Cunhua Pan , Hong Ren 2019
Perfect channel state information (CSI) is challenging to obtain due to the limited signal processing capability at the intelligent reflection surface (IRS). In this paper, we study the worst-case robust beamforming design for an IRS-aided multiuser multiple-input single-output (MU-MISO) system under the assumption of imperfect CSI. We aim for minimizing the transmit power while ensuring that the achievable rate of each user meets the quality of service (QoS) requirement for all possible channel error realizations. With unit-modulus and rate constraints, this problem is non-convex. The imperfect CSI further increases the difficulty of solving this problem. By using approximation and transformation techniques, we convert this problem into a squence of semidefinite programming (SDP) subproblems that can be efficiently solved. Numerical results show that the proposed robust beamforming design can guarantee the required QoS targets for all the users.
This paper investigates an intelligent reflecting surface (IRS) aided cooperative communication network, where the IRS exploits large reflecting elements to proactively steer the incident radio-frequency wave towards destination terminals (DTs). As t he number of reflecting elements increases, the reflection resource allocation (RRA) will become urgently needed in this context, which is due to the non-ignorable energy consumption. The goal of this paper, therefore, is to realize the RRA besides the active-passive beamforming design, where RRA is based on the introduced modular IRS architecture. The modular IRS consists with multiple modules, each of which has multiple reflecting elements and is equipped with a smart controller, all the controllers can communicate with each other in a point-to-point fashion via fiber links. Consequently, an optimization problem is formulated to maximize the minimum SINR at DTs, subject to the module size constraint and both individual source terminal (ST) transmit power and the reflecting coefficients constraints. Whereas this problem is NP-hard due to the module size constraint, we develop an approximate solution by introducing the mixed row block $ell_{1,F}$-norm to transform it into a suitable semidefinite relaxation. Finally, numerical results demonstrate the meaningfulness of the introduced modular IRS architecture.
In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the networks sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game. Simulation results show impressive performance in terms of the achievable rate and processing time.
113 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This paper investigates the reconfigurable reflecting surface (RIS)-aided multiple-input-single-output (MISO) systems with imperfect channel state information (CSI), where RIS-related channels are modeled by Rician fading. Considering the overhead an d complexity in practical systems, we employ the low-complexity maximum ratio combining (MRC) beamforming at the base station (BS), and configure the phase shifts of the RIS based on long-term statistical CSI. Specifically, we first estimate the overall channel matrix based on the linear minimum mean square error (LMMSE) estimator, and evaluate the performance of MSE and normalized MSE (NMSE). Then, with the estimated channel, we derive the closed-form expressions of the ergodic rate. The derived expressions show that with Rician RIS-related channels, the rate can maintain at a non-zero value when the transmit power is scaled down proportionally to $1/M$ or $1/N^2$, where $M$ and $N$ are the number of antennas and reflecting elements, respectively. However, if all the RIS-related channels are fully Rayleigh, the transmit power of each user can only be scaled down proportionally to $1/sqrt{M}$ or $1/N$. Finally, numerical results verify the promising benefits from the RIS to traditional MISO systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا