ﻻ يوجد ملخص باللغة العربية
By means of spin current, the flow of spin angular momentum, we find a regime of spin treacle in a frustrated magnetic system. To establish its existence, we have performed spin transport measurements in nanometer-scale spin glasses. At temperatures high enough that the magnetic moments fluctuate at high frequencies, the spin Hall angle, the conversion yield between spin current and charge current, is independent of temperature. The spin Hall angle starts to decrease at a certain temperature $T^{*}$ and completely vanishes at a lower temperature. We argue that the latter corresponds to the spin freezing temperature $T_{rm f}$ of the nanometer-scale spin glass, where the direction of conduction electron spin is randomized by the exchange coupling with the localized moments. The present experiment textit{quantitatively} verifies the existence of a distinct spin treacle between $T_{rm f}$ and $T^{*}$. We have also quantified a time scale of fluctuation of local magnetic moments in the spin treacle from the spin relaxation time of conduction electrons.
Helicity indicates the in-plane magnetic-moment swirling direction of a skyrmionic configuration. The ability to reverse the helicity of a skyrmionic bubble via purely electrical means has been predicted in frustrated magnetic systems, however its ex
The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry with strongly inhomogeneous current flow. As an illustration, spin-
We experimentally study the transport features of electrons in a spin-diode structure consisting of a single semiconductor quantum dot (QD) weakly coupled to one nonmagnetic (NM) and one ferromagnetic (FM) lead, in which the QD has an artificial atom
Coherence peak effects in a superconductor induced by a thermal spin current are reported. We measured inverse spin Hall effects induced by spin injection from a ferrimagnetic insulator Y$_3$Fe$_5$O$_{12}$ into a superconductor NbN using longitudinal
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof