ترغب بنشر مسار تعليمي؟ اضغط هنا

On algebras associated with invariant means on the subnormal subgroups of an amenable group

72   0   0.0 ( 0 )
 نشر من قبل Jared White
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Jared T. White




اسأل ChatGPT حول البحث

Let $G$ be an amenable group. We define and study an algebra $mathcal{A}_{sn}(G)$, which is related to invariant means on the subnormal subgroups of $G$. For a just infinite amenable group $G$, we show that $mathcal{A}_{sn}(G)$ is nilpotent if and only if $G$ is not a branch group, and in the case that it is nilpotent we determine the index of nilpotence. We next study $operatorname{rad} ell^1(G)^{**}$ for an amenable branch group $G$, and show that it always contains nilpotent left ideals of arbitrarily large index, as well as non-nilpotent elements. This provides infinitely many finitely-generated counterexamples to a question of Dales and Lau, first resolved by the author in a previous article, which asks whether we always have $(operatorname{rad} ell^1(G)^{**})^{Box 2} = { 0 }$. We further study this question by showing that $(operatorname{rad} ell^1(G)^{**})^{Box 2} = { 0 }$ imposes certain structural constraints on the group $G$.



قيم البحث

اقرأ أيضاً

We show that topological amenability of an action of a countable discrete group on a compact space is equivalent to the existence of an invariant mean for the action. We prove also that this is equivalent to vanishing of bounded cohomology for a clas s of Banach G-modules associated to the action, as well as to vanishing of a specific cohomology class. In the case when the compact space is a point our result reduces to a classic theorem of B.E. Johnson characterising amenability of groups. In the case when the compact space is the Stone-v{C}ech compactification of the group we obtain a cohomological characterisation of exactness for the group, answering a question of Higson.
This paper is a new contribution to the study of regular subgroups of the affine group $AGL_n(F)$, for any field $F$. In particular we associate to any partition $lambda eq (1^{n+1})$ of $n+1$ abelian regular subgroups in such a way that different pa rtitions define non-conjugate subgroups. Moreover, we classify the regular subgroups of certain natural types for $nleq 4$. Our classification is equivalent to the classification of split local algebras of dimension $n+1$ over $F$. Our methods, based on classical results of linear algebra, are computer free.
323 - Gili Golan , Mark Sapir 2015
We provide two ways to show that the R. Thompson group $F$ has maximal subgroups of infinite index which do not fix any number in the unit interval under the natural action of $F$ on $(0,1)$, thus solving a problem by D. Savchuk. The first way employ s Jones subgroup of the R. Thompson group $F$ and leads to an explicit finitely generated example. The second way employs directed 2-complexes and 2-dimensional analogs of Stallings core graphs, and gives many implicit examples. We also show that $F$ has a decreasing sequence of finitely generated subgroups $F>H_1>H_2>...$ such that $cap H_i={1}$ and for every $i$ there exist only finitely many subgroups of $F$ containing $H_i$.
120 - Gili Golan , Mark Sapir 2021
We prove that Thompsons group $F$ has a subgroup $H$ such that the conjugacy problem in $H$ is undecidable and the membership problem in $H$ is easily decidable. The subgroup $H$ of $F$ is a closed subgroup of $F$. That is, every function in $F$ whic h is a piecewise-$H$ function belongs to $H$. Other interesting examples of closed subgroups of $F$ include Jones subgroups $overrightarrow{F}_n$ and Jones $3$-colorable subgroup $mathcal F$. By a recent result of the first author, all maximal subgroups of $F$ of infinite index are closed. In this paper we prove that if $Kleq F$ is finitely generated then the closure of $K$, i.e., the smallest closed subgroup of $F$ which contains $K$, is finitely generated. We also prove that all finitely generated closed subgroups of $F$ are undistorted in $F$. In particular, all finitely generated maximal subgroups of $F$ are undistorted in $F$.
A subset ${g_1, ldots , g_d}$ of a finite group $G$ invariably generates $G$ if the set ${g_1^{x_1}, ldots, g_d^{x_d}}$ generates $G$ for every choice of $x_i in G$. The Chebotarev invariant $C(G)$ of $G$ is the expected value of the random variable $n$ that is minimal subject to the requirement that $n$ randomly chosen elements of $G$ invariably generate $G$. The first author recently showed that $C(G)le betasqrt{|G|}$ for some absolute constant $beta$. In this paper we show that, when $G$ is soluble, then $beta$ is at most $5/3$. We also show that this is best possible. Furthermore, we show that, in general, for each $epsilon>0$ there exists a constant $c_{epsilon}$ such that $C(G)le (1+epsilon)sqrt{|G|}+c_{epsilon}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا