ﻻ يوجد ملخص باللغة العربية
A subset ${g_1, ldots , g_d}$ of a finite group $G$ invariably generates $G$ if the set ${g_1^{x_1}, ldots, g_d^{x_d}}$ generates $G$ for every choice of $x_i in G$. The Chebotarev invariant $C(G)$ of $G$ is the expected value of the random variable $n$ that is minimal subject to the requirement that $n$ randomly chosen elements of $G$ invariably generate $G$. The first author recently showed that $C(G)le betasqrt{|G|}$ for some absolute constant $beta$. In this paper we show that, when $G$ is soluble, then $beta$ is at most $5/3$. We also show that this is best possible. Furthermore, we show that, in general, for each $epsilon>0$ there exists a constant $c_{epsilon}$ such that $C(G)le (1+epsilon)sqrt{|G|}+c_{epsilon}$.
Let $cO_K$ be a complete discrete valuation ring of residue characteristic $p>0$, and $G$ be a finite flat group scheme over $cO_K$ of order a power of $p$. We prove in this paper that the Abbes-Saito filtration of $G$ is bounded by a simple linear f
We study the class of finite groups $G$ satisfying $Phi (G/N)= Phi(G)N/N$ for all normal subgroups $N$ of $G$. As a consequence of our main results we extend and amplify a theorem of Doerk concerning this class from the soluble universe to all finite
Let $G$ be an amenable group. We define and study an algebra $mathcal{A}_{sn}(G)$, which is related to invariant means on the subnormal subgroups of $G$. For a just infinite amenable group $G$, we show that $mathcal{A}_{sn}(G)$ is nilpotent if and on
We show that, there exists a constant $a$ such that, for every subgroup $H$ of a finite group $G$, the number of maximal subgroups of $G$ containing $H$ is bounded above by $a|G:H|^{3/2}$. In particular, a transitive permutation group of degree $n$ h
A group $G$ is said to be $frac{3}{2}$-generated if every nontrivial element belongs to a generating pair. It is easy to see that if $G$ has this property then every proper quotient of $G$ is cyclic. In this paper we prove that the converse is true f