ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-supernova evolution, compact object masses and explosion properties of stripped binary stars

79   0   0.0 ( 0 )
 نشر من قبل Fabian Schneider
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most massive stars are born in binary or higher-order multiple systems and exchange mass with a companion during their lives. In particular, the progenitors of a large fraction of compact object mergers, and Galactic neutron stars (NSs) and black holes (BHs) have been stripped off their envelopes by a binary companion. Here, we study the evolution of single and stripped binary stars up to core collapse with the stellar evolution code MESA and their final fates with a parametric supernova (SN) model. We find that stripped binary stars can have systematically different pre-SN structures compared to genuine single stars and thus also different SN outcomes. The bases of these differences are already established by the end of core helium burning and are preserved up to core collapse. We find a non-monotonic pattern of NS and BH formation as a function of CO core mass that is different in single and stripped binary stars. In terms of initial masses, single stars of >35 Msun all form BHs, while this transition is only at 70 Msun in stripped stars. On average, stripped stars give rise to lower NS and BH masses, higher explosion energies, higher kick velocities and higher nickel yields. Within a simplified population synthesis model, we show that our results lead to a significant reduction of the rates of BH-NS and BH-BH mergers with respect to typical assumptions made on NS and BH formation. Therefore, we predict lower detection rates of such merger events by, e.g., advanced LIGO than is often considered. We further show how features in the NS-BH mass distribution of single and stripped stars relate to the chirp-mass distribution of compact object mergers. Further implications of our findings are discussed with respect to the missing red-supergiant problem, a possible mass gap between NSs and BHs, X-ray binaries and observationally inferred nickel masses from Type Ib/c and IIP Sne. [abridged]



قيم البحث

اقرأ أيضاً

335 - E. Laplace , S. Justham , M. Renzo 2021
The majority of massive stars live in binary or multiple systems and will interact during their lifetimes, which helps to explain the observed diversity of core-collapse supernovae. Donor stars in binary systems can lose most of their hydrogen-rich e nvelopes through mass transfer, which not only affects the surface properties, but also the core structure. However, most calculations of the core-collapse properties of massive stars rely on single-star models. We present a systematic study of the difference between the pre-supernova structures of single stars and stars of the same initial mass (11 - 21Msun) that have been stripped due to stable post-main sequence mass transfer at solar metallicity. We present the pre-supernova core composition with novel diagrams that give an intuitive representation of the isotope distribution. As shown in previous studies, at the edge of the carbon-oxygen core, the binary-stripped star models contain an extended gradient of carbon, oxygen, and neon. This layer originates from the receding of the convective helium core during core helium burning in binary-stripped stars, which does not occur in single-star models. We find that this same evolutionary phase leads to systematic differences in the final density and nuclear energy generation profiles. Binary-stripped star models have systematically higher total masses of carbon at the moment of core collapse compared to single star models, which likely results in systematically different supernova yields. In about half of our models, the silicon-burning and oxygen-rich layers merge after core silicon burning. We discuss the implications of our findings for the explodability, supernova observations, and nucleosynthesis from these stars. Our models will be publicly available and can be readily used as input for supernova simulations. [Abridged]
The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC5806 (22.5Mpc). Our spectral sequence in the optical and infrared suggests a likely Type Ib classification. We identify a singl e, blue progenitor candidate in deep pre-explosion imaging within a 2{sigma} error circle of 80 mas (8.7 pc). The candidate has a MB luminosity of -5.2 +/- 0.4 mag and a B-I color of 0.1+/-0.3 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 1.1 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in cm and mm-wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass loading parameter of 1.3*10^12 g/cm. Assuming a wind velocity of 10^3km/s, we derive a progenitor mass loss rate of 3*10^-5Msun/yr. Our observations, taken as a whole, are consistent with a Wolf Rayet progenitor of the supernova iPTF13bvn.
I summarize what we have learned about the nature of stars that ultimately explode as core-collapse supernovae from the examination of images taken prior to the explosion. By registering pre-supernova and post-supernova images, usually taken at high resolution using either space-based optical detectors, or ground-based infrared detectors equipped with laser guide star adaptive optics systems, nearly three dozen core-collapse supernovae have now had the properties of their progenitor stars either directly measured or (more commonly) constrained by establishing upper limits on their luminosities. These studies enable direct comparison with stellar evolution models that, in turn, permit estimates of the progenitor stars physical characteristics to be made. I review progenitor characteristics (or constraints) inferred from this work for each of the major core-collapse supernova types (II-Plateau, II-Linear, IIb, IIn, Ib/c), with a particular focus on the analytical techniques used and the processes through which conclusions have been drawn. Brief discussion of a few individual events is also provided, including SN 2005gl, a type IIn supernova that is shown to have had an extremely luminous -- and thus very massive -- progenitor that exploded shortly after a violent, luminous blue variable-like eruption phase, contrary to standard theoretical predictions.
119 - Adam Burrows , David Radice , 2019
Using the new state-of-the-art core-collapse supernova (CCSN) code F{sc{ornax}}, we have simulated the three-dimensional dynamical evolution of the cores of 9-, 10-, 11-, 12-, and 13-M$_{odot}$ stars from the onset of collapse. Stars from 8-M$_{odot} $ to 13-M$_{odot}$ constitute roughly 50% of all massive stars, so the explosive potential for this mass range is important to the overall theory of CCSNe. We find that the 9-, 10-, 11-, and 12-M$_{odot}$ models explode in 3D easily, but that the 13-M$_{odot}$ model does not. From these findings, and the fact that slightly more massive progenitors seem to explode citep{vartanyan2019}, we suggest that there is a gap in explodability near 12-M$_{odot}$ to 14-M$_{odot}$ for non-rotating progenitor stars. Factors conducive to explosion are turbulence behind the stalled shock, energy transfer due to neutrino-matter absorption and neutrino-matter scattering, many-body corrections to the neutrino-nucleon scattering rate, and the presence of a sharp silicon-oxygen interface in the progenitor. Our 3D exploding models frequently have a dipolar structure, with the two asymmetrical exploding lobes separated by a pinched waist where matter temporarily continues to accrete. This process maintains the driving neutrino luminosty, while partially shunting matter out of the way of the expanding lobes, thereby modestly facilitating explosion. The morphology of all 3D explosions is characterized by multiple bubble structures with a range of low-order harmonic modes. Though much remains to be done in CCSN theory, these and other results in the literature suggest that, at least for these lower-mass progenitors, supernova theory is converging on a credible solution.
Most supernova explosions accompany the death of a massive star. These explosions give birth to neutron stars and black holes and eject solar masses of heavy elements. However, determining the mechanism of explosion has been a half-century journey of great complexity. In this paper, we present our perspective of the status of this theoretical quest and the physics and astrophysics upon which its resolution seems to depend. The delayed neutrino-heating mechanism is emerging as a robust solution, but there remain many issues to address, not the least of which involves the chaos of the dynamics, before victory can unambiguously be declared. It is impossible to review in detail all aspects of this multi-faceted, more-than-half-century-long theoretical quest. Rather, we here map out the major ingredients of explosion and the emerging systematics of the observables with progenitor mass, as we currently see them. Our discussion will of necessity be speculative in parts, and many of the ideas may not survive future scrutiny. Some statements may be viewed as informed predictions concerning the numerous observables that rightly exercise astronomers witnessing and diagnosing the supernova Universe. Importantly, the same explosion in the inside, by the same mechanism, can look very different in photons, depending upon the mass and radius of the star upon explosion. A 10$^{51}$-erg (one Bethe) explosion of a red supergiant with a massive hydrogen-rich envelope, a diminished hydrogen envelope, no hydrogen envelope, and, perhaps, no hydrogen envelope or helium shell all look very different, yet might have the same core and explosion evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا