ﻻ يوجد ملخص باللغة العربية
We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise $epsilon$-close to the uniform distribution, in an emph{amortized-efficient} fashion. We consider the adjacency list query model, where access to a graph $G$ is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let $n$ and $m$ denote the number of vertices and edges of $G$, respectively. Eden and Rosenbaum provided upper and lower bounds of $Theta^*(n/sqrt m)$ for sampling a single edge in general graphs (where $O^*(cdot)$ suppresses $textrm{poly}(1/epsilon)$ and $textrm{poly}(log n)$ dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples $q$ in advance, has an overall cost that is sublinear in $q$, namely, $O^*(sqrt q cdot(n/sqrt m))$, which is strictly preferable to $O^*(qcdot (n/sqrt m))$ cost resulting from $q$ invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, Tv{e}tek and Thorup (arXiv, preprint) proved that this bound is essentially optimal.
We present a data structure that can maintain a simple planar graph under edge contractions in linear total time. The data structure supports adjacency queries and provides access to neighbor lists in $O(1)$ time. Moreover, it can report all the aris
Gaussian processes are the gold standard for many real-world modeling problems, especially in cases where a models success hinges upon its ability to faithfully represent predictive uncertainty. These problems typically exist as parts of larger frame
Minimizing the discrepancy of a set system is a fundamental problem in combinatorics. One of the cornerstones in this area is the celebrated six standard deviations result of Spencer (AMS 1985): In any system of n sets in a universe of size n, there
An added edge to a graph is called an inset edge. Predicting k inset edges which minimize the average distance of a graph is known to be NP-Hard. When k = 1 the complexity of the problem is polynomial. In this paper, we further find the single inset
Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running ti