ﻻ يوجد ملخص باللغة العربية
An added edge to a graph is called an inset edge. Predicting k inset edges which minimize the average distance of a graph is known to be NP-Hard. When k = 1 the complexity of the problem is polynomial. In this paper, we further find the single inset edge(s) of a tree with the closest change on the average distance to a given input. To do that we may require the effect of each inset edge for the set of inset edges. For this, we propose an algorithm with the time complexity between O(m) and O(m/m) and an average of less than O( m.log(m)), where m stands for the number of possible inset edges. Then it takes up to O(log(m)) to find the target inset edges for a custom change on the average distance. Using theoretical tools, the algorithm strictly avoids recalculating the distances with no changes, after adding a new edge to a tree. Then reduces the time complexity of calculating remaining distances using some matrix tools which first introduced in [8] with one additional technique. This gives us a dynamic time complexity and absolutely depends on the input tree which is proportion to the Wiener index of the input tree.
An added edge to a graph is called an inset edge. Predicting k inset edges which minimize the average distance of a graph is known to be NP-Hard. However, when k = 1 the complexity of the problem is polynomial. In this paper, some tools for a precise
PQ-trees and PC-trees are data structures that represent sets of linear and circular orders, respectively, subject to constraints that specific subsets of elements have to be consecutive. While equivalent to each other, PC-trees are conceptually much
Tree comparison metrics have proven to be an invaluable aide in the reconstruction and analysis of phylogenetic (evolutionary) trees. The path-length distance between trees is a particularly attractive measure as it reflects differences in tree shape
We consider the design of adaptive data structures for searching elements of a tree-structured space. We use a natural generalization of the rotation-based online binary search tree model in which the underlying search space is the set of vertices of
We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise $epsilon$-close to the uniform distribution, in an emph{amortized-efficient} fashion. We consider the adjacency list query model, whe