ترغب بنشر مسار تعليمي؟ اضغط هنا

Selecting the Derivative of a Functional Covariate in Scalar-on-Function Regression

103   0   0.0 ( 0 )
 نشر من قبل Giles Hooker
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents tests to formally choose between regression models using different derivatives of a functional covariate in scalar-on-function regression. We demonstrate that for linear regression, models using different derivatives can be nested within a model that includes point-impact effects at the end-points of the observed functions. Contrasts can then be employed to test the specification of different derivatives. When nonlinear regression models are defined, we apply a $J$ test to determine the statistical significance of the nonlinear structure between a functional covariate and a scalar response. The finite-sample performance of these methods is verified in simulation, and their practical application is demonstrated using a chemometric data set.



قيم البحث

اقرأ أيضاً

This paper develops a novel spatial quantile function-on-scalar regression model, which studies the conditional spatial distribution of a high-dimensional functional response given scalar predictors. With the strength of both quantile regression and copula modeling, we are able to explicitly characterize the conditional distribution of the functional or image response on the whole spatial domain. Our method provides a comprehensive understanding of the effect of scalar covariates on functional responses across different quantile levels and also gives a practical way to generate new images for given covariate values. Theoretically, we establish the minimax rates of convergence for estimating coefficient functions under both fixed and random designs. We further develop an efficient primal-dual algorithm to handle high-dimensional image data. Simulations and real data analysis are conducted to examine the finite-sample performance.
We study additive function-on-function regression where the mean response at a particular time point depends on the time point itself as well as the entire covariate trajectory. We develop a computationally efficient estimation methodology based on a novel combination of spline bases with an eigenbasis to represent the trivariate kernel function. We discuss prediction of a new response trajectory, propose an inference procedure that accounts for total variability in the predicted response curves, and construct pointwise prediction intervals. The estimation/inferential procedure accommodates realistic scenarios such as correlated error structure as well as sparse and/or irregular designs. We investigate our methodology in finite sample size through simulations and two real data applications.
124 - Metin Bulus 2019
This study extends power formulas proposed by Schochet (2008) assuming that the cluster-level score variable follows quadratic functional form. Results reveal that we need not be concerned with treatment by linear term interaction, and polynomial deg ree up to second order for symmetric truncation intervals. In comparison, every slight change in the functional form alters sample size requirements for asymmetric truncation intervals. Finally, an empirical framework beyond quadratic functional form is provided when the asymptotic variance of the treatment effect is untraceable. In this case, the CRD design effect is either computed from moments of the sample or approximate population moments via simulation. Formulas for quadratic functional form and the extended empirical framework are implemented in the cosa R package and companion Shiny web application.
In this paper, a functional partial quantile regression approach, a quantile regression analog of the functional partial least squares regression, is proposed to estimate the function-on-function linear quantile regression model. A partial quantile c ovariance function is first used to extract the functional partial quantile regression basis functions. The extracted basis functions are then used to obtain the functional partial quantile regression components and estimate the final model. In our proposal, the functional forms of the discretely observed random variables are first constructed via a finite-dimensional basis function expansion method. The functional partial quantile regression constructed using the functional random variables is approximated via the partial quantile regression constructed using the basis expansion coefficients. The proposed method uses an iterative procedure to extract the partial quantile regression components. A Bayesian information criterion is used to determine the optimum number of retained components. The proposed functional partial quantile regression model allows for more than one functional predictor in the model. However, the true form of the proposed model is unspecified, as the relevant predictors for the model are unknown in practice. Thus, a forward variable selection procedure is used to determine the significant predictors for the proposed model. Moreover, a case-sampling-based bootstrap procedure is used to construct pointwise prediction intervals for the functional response. The predictive performance of the proposed method is evaluated using several Monte Carlo experiments under different data generation processes and error distributions. Through an empirical data example, air quality data are analyzed to demonstrate the effectiveness of the proposed method.
A partial least squares regression is proposed for estimating the function-on-function regression model where a functional response and multiple functional predictors consist of random curves with quadratic and interaction effects. The direct estimat ion of a function-on-function regression model is usually an ill-posed problem. To overcome this difficulty, in practice, the functional data that belong to the infinite-dimensional space are generally projected into a finite-dimensional space of basis functions. The function-on-function regression model is converted to a multivariate regression model of the basis expansion coefficients. In the estimation phase of the proposed method, the functional variables are approximated by a finite-dimensional basis function expansion method. We show that the partial least squares regression constructed via a functional response, multiple functional predictors, and quadratic/interaction terms of the functional predictors is equivalent to the partial least squares regression constructed using basis expansions of functional variables. From the partial least squares regression of the basis expansions of functional variables, we provide an explicit formula for the partial least squares estimate of the coefficient function of the function-on-function regression model. Because the true forms of the models are generally unspecified, we propose a forward procedure for model selection. The finite sample performance of the proposed method is examined using several Monte Carlo experiments and two empirical data analyses, and the results were found to compare favorably with an existing method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا