ترغب بنشر مسار تعليمي؟ اضغط هنا

Function-on-function partial quantile regression

143   0   0.0 ( 0 )
 نشر من قبل Han Lin Shang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a functional partial quantile regression approach, a quantile regression analog of the functional partial least squares regression, is proposed to estimate the function-on-function linear quantile regression model. A partial quantile covariance function is first used to extract the functional partial quantile regression basis functions. The extracted basis functions are then used to obtain the functional partial quantile regression components and estimate the final model. In our proposal, the functional forms of the discretely observed random variables are first constructed via a finite-dimensional basis function expansion method. The functional partial quantile regression constructed using the functional random variables is approximated via the partial quantile regression constructed using the basis expansion coefficients. The proposed method uses an iterative procedure to extract the partial quantile regression components. A Bayesian information criterion is used to determine the optimum number of retained components. The proposed functional partial quantile regression model allows for more than one functional predictor in the model. However, the true form of the proposed model is unspecified, as the relevant predictors for the model are unknown in practice. Thus, a forward variable selection procedure is used to determine the significant predictors for the proposed model. Moreover, a case-sampling-based bootstrap procedure is used to construct pointwise prediction intervals for the functional response. The predictive performance of the proposed method is evaluated using several Monte Carlo experiments under different data generation processes and error distributions. Through an empirical data example, air quality data are analyzed to demonstrate the effectiveness of the proposed method.



قيم البحث

اقرأ أيضاً

A partial least squares regression is proposed for estimating the function-on-function regression model where a functional response and multiple functional predictors consist of random curves with quadratic and interaction effects. The direct estimat ion of a function-on-function regression model is usually an ill-posed problem. To overcome this difficulty, in practice, the functional data that belong to the infinite-dimensional space are generally projected into a finite-dimensional space of basis functions. The function-on-function regression model is converted to a multivariate regression model of the basis expansion coefficients. In the estimation phase of the proposed method, the functional variables are approximated by a finite-dimensional basis function expansion method. We show that the partial least squares regression constructed via a functional response, multiple functional predictors, and quadratic/interaction terms of the functional predictors is equivalent to the partial least squares regression constructed using basis expansions of functional variables. From the partial least squares regression of the basis expansions of functional variables, we provide an explicit formula for the partial least squares estimate of the coefficient function of the function-on-function regression model. Because the true forms of the models are generally unspecified, we propose a forward procedure for model selection. The finite sample performance of the proposed method is examined using several Monte Carlo experiments and two empirical data analyses, and the results were found to compare favorably with an existing method.
This paper develops a novel spatial quantile function-on-scalar regression model, which studies the conditional spatial distribution of a high-dimensional functional response given scalar predictors. With the strength of both quantile regression and copula modeling, we are able to explicitly characterize the conditional distribution of the functional or image response on the whole spatial domain. Our method provides a comprehensive understanding of the effect of scalar covariates on functional responses across different quantile levels and also gives a practical way to generate new images for given covariate values. Theoretically, we establish the minimax rates of convergence for estimating coefficient functions under both fixed and random designs. We further develop an efficient primal-dual algorithm to handle high-dimensional image data. Simulations and real data analysis are conducted to examine the finite-sample performance.
97 - Nadja Klein , Jorge Mateu 2021
Statistical techniques used in air pollution modelling usually lack the possibility to understand which predictors affect air pollution in which functional form; and are not able to regress on exceedances over certain thresholds imposed by authoritie s directly. The latter naturally induce conditional quantiles and reflect the seriousness of particular events. In the present paper we focus on this important aspect by developing quantile regression models further. We propose a general Bayesian effect selection approach for additive quantile regression within a highly interpretable framework. We place separate normal beta prime spike and slab priors on the scalar importance parameters of effect parts and implement a fast Gibbs sampling scheme. Specifically, it enables to study quantile-specific covariate effects, allows these covariates to be of general functional form using additive predictors, and facilitates the analysts decision whether an effect should be included linearly, non-linearly or not at all in the quantiles of interest. In a detailed analysis on air pollution data in Madrid (Spain) we find the added value of modelling extreme nitrogen dioxide (NO2) concentrations and how thresholds are driven differently by several climatological variables and traffic as a spatial proxy. Our results underpin the need of enhanced statistical models to support short-term decisions and enable local authorities to mitigate or even prevent exceedances of NO2 concentration limits.
We study additive function-on-function regression where the mean response at a particular time point depends on the time point itself as well as the entire covariate trajectory. We develop a computationally efficient estimation methodology based on a novel combination of spline bases with an eigenbasis to represent the trivariate kernel function. We discuss prediction of a new response trajectory, propose an inference procedure that accounts for total variability in the predicted response curves, and construct pointwise prediction intervals. The estimation/inferential procedure accommodates realistic scenarios such as correlated error structure as well as sparse and/or irregular designs. We investigate our methodology in finite sample size through simulations and two real data applications.
This article is concerned with the fitting of multinomial regression models using the so-called Poisson Trick. The work is motivated by Chen & Kuo (2001) and Malchow-M{o}ller & Svarer (2003) which have been criticized for being computationally ineffi cient and sometimes producing nonsense results. We first discuss the case of independent data and offer a parsimonious fitting strategy when all covariates are categorical. We then propose a new approach for modelling correlated responses based on an extension of the Gamma-Poisson model, where the likelihood can be expressed in closed-form. The parameters are estimated via an Expectation/Conditional Maximization (ECM) algorithm, which can be implemented using functions for fitting generalized linear models readily available in standard statistical software packages. Compared to existing methods, our approach avoids the need to approximate the intractable integrals and thus the inference is exact with respect to the approximating Gamma-Poisson model. The proposed method is illustrated via a reanalysis of the yogurt data discussed by Chen & Kuo (2001).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا